matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKörpererweiterung, Char.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Körpererweiterung, Char.
Körpererweiterung, Char. < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterung, Char.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Di 05.01.2010
Autor: kunzmaniac

Aufgabe
Sei K ein Körper der Charakteristik [mm] $\neq [/mm] 2$.
Jede Körpererweiterung K/F mit Grad 2 wird durch Adjunktion einer Quadratwurzel erhalten.

Hallo,

d.h. $K = F(d)$ mit [mm] $d^2 \in [/mm] F$ geeignet. Ich wollte eigentlich über das Mipo gehen, aber die Erweiterung muss ja nicht zwangsläufig algebraisch sein.
Der Grad von K/F ist 2, also ist K ein 2-dim F-Vektorraum.
d.h. jedes Element aus K lässt sich schreiben als:
$a+b*d$ mit $a,b [mm] \in [/mm] F$.
Im Quadrat ergibt das: [mm] $a^2+2*a*b*d+b^2*d^2$, [/mm] also müsste [mm] $d^2 [/mm] = d$ also 1 oder 0 (dann aber nicht Grad 2), oder [mm] $d^2 \in [/mm] F$ sein.
Stimmt das so in etwa? Wenn ja: Wo fließt hier die Charakteristik ein?

        
Bezug
Körpererweiterung, Char.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Di 05.01.2010
Autor: felixf

Hallo!

> Sei K ein Körper der Charakteristik [mm]\neq 2[/mm].
>  Jede
> Körpererweiterung K/F mit Grad 2 wird durch Adjunktion
> einer Quadratwurzel erhalten.
>  
> d.h. [mm]K = F(d)[/mm] mit [mm]d^2 \in F[/mm] geeignet.

Genau.

> Ich wollte eigentlich
> über das Mipo gehen, aber die Erweiterung muss ja nicht
> zwangsläufig algebraisch sein.

Doch? Jede endliche Erweiterung ist algebraisch!

>  Der Grad von K/F ist 2, also ist K ein 2-dim
> F-Vektorraum.

Genau.

>  d.h. jedes Element aus K lässt sich schreiben als:
>  [mm]a+b*d[/mm] mit [mm]a,b \in F[/mm].

Was ist $d$ bei dir? Wenn du das obige $d$ meinst: das musst du doch erstmal konsturieren! Das hast du noch nicht!

> Im Quadrat ergibt das: [mm]a^2+2*a*b*d+b^2*d^2[/mm], also müsste
> [mm]d^2 = d[/mm] also 1 oder 0 (dann aber nicht Grad 2), oder [mm]d^2 \in F[/mm]
> sein.

?!

> Stimmt das so in etwa?

Nein.

Mal zurueck zur Erweiterung $F / K$. Nimm dir irgendein $x [mm] \in [/mm] F [mm] \setminus [/mm] K$. Dann hast du doch den Koerperturm $K [mm] \subsetneqq [/mm] K(x) [mm] \subseteq [/mm] F$. Kann $K(x) [mm] \subsetneqq [/mm] F$ gelten? (Nein, kann es nicht: damit ist $F = K(x)$.)

Dieses $x$ hat nun ein Minimalpolynom; etwa [mm] $T^2 [/mm] + a T + b$ mit $a, b [mm] \in [/mm] K$. Kannst du $x$ durch $x + c$  mit $c [mm] \in [/mm] K$ ersetzen, so dass $x + c$ ein Minimalpolynom von der Form [mm] $T^2 [/mm] + [mm] \hat{b}$ [/mm] hat mit [mm] $\hat{b} \in [/mm] K$? Und gilt $K(x) = K(x + c)$?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]