matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKörpererweiterung/Zwischenkörp
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Körpererweiterung/Zwischenkörp
Körpererweiterung/Zwischenkörp < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterung/Zwischenkörp: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Mi 22.09.2010
Autor: Amande


Hey zusammen,

wir haben uns Gedanken zu den Zwischenkörpern der Körpererweiterung [mm]\IQ(\zeta _5):\IQ[/mm] gemacht, wobei [mm]\zeta _n[/mm] eine primitive n-te Einheitswurzel ist.

Die Galoisgruppe G der Körpererweiterung ist isomorph zu ([mm]\IZ /n\IZ[/mm])*.
Das liefert uns zumindest mal die Anzahl der Zwischenkörper.

Wir haben versucht, die Zwischenkörper für [mm]\IQ(\zeta _5):\IQ[/mm] zu bestimmen.
([mm]\IZ /5\IZ[/mm])*={1,2,3,4} und es gibt außer den trivialen Untergruppen noch die Untergruppe {1,4}.
Diese ist dann zu einer Untergruppe H der Galoisgruppe G isomorph.

Mit dem Hauptsatz der Galoistheorie wissen wir dann, dass wir in [mm]\IQ(\zeta _5):\IQ[/mm] einen Zwischenkörper L mit MBmm]\IQ(\zeta _5)[/mm]:L]=[L:[mm]\IQ[/mm=2 haben.
Unsere Frage war nun, ob wir diesen Zwischenkörper noch irgendwie genauer angeben können.
Ist das möglich?

Danke schonmal im voraus!
Mandy


        
Bezug
Körpererweiterung/Zwischenkörp: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Mi 22.09.2010
Autor: felixf

Moin Mandy!

> wir haben uns Gedanken zu den Zwischenkörpern der
> Körpererweiterung [mm]\IQ(\zeta _5):\IQ[/mm] gemacht, wobei [mm]\zeta _n[/mm]
> eine primitive n-te Einheitswurzel ist.
>  
> Die Galoisgruppe G der Körpererweiterung ist isomorph zu
> ([mm]\IZ /n\IZ[/mm])*.
>  Das liefert uns zumindest mal die Anzahl der
> Zwischenkörper.

Indem man die Anzahl der Untergruppen bestimmt, ja.

> Wir haben versucht, die Zwischenkörper für [mm]\IQ(\zeta _5):\IQ[/mm]
> zu bestimmen.
>  ([mm]\IZ /5\IZ[/mm])*={1,2,3,4} und es gibt außer den trivialen
> Untergruppen noch die Untergruppe {1,4}.
>  Diese ist dann zu einer Untergruppe H der Galoisgruppe G
> isomorph.

Genau.

> Mit dem Hauptsatz der Galoistheorie wissen wir dann, dass
> wir in [mm]\IQ(\zeta _5):\IQ[/mm] einen Zwischenkörper L mit
> MBmm]\IQ(\zeta _5)[/mm]:L]=[L:[mm]\IQ[/mm=2 haben.
>  Unsere Frage war nun, ob wir diesen Zwischenkörper noch
> irgendwie genauer angeben können.
>  Ist das möglich?

Nun, zum Element 4 gehoert der Automorphismus [mm] $\phi [/mm] : [mm] \IQ(\zeta_5) \to \IQ(\zeta_5)$, $\zeta_5 \mapsto \zeta_5^4 [/mm] = [mm] \zeta_5^{-1}$. [/mm] Zu 1 gehoert die Identitaet.

$L$ ist nun der Fixkoerper von [mm] $\phi$ [/mm] (und der Identitaet, aber die kann man ignorieren), du suchst also alle Elemente $x [mm] \in \IQ(\zeta_5)$ [/mm] mit [mm] $\phi(x) [/mm] = x$. Jedes Element $x$ kannst du als $x = [mm] \sum_{i=0}^3 x_i \zeta_5^i$ [/mm] schreiben mit [mm] $x_i \in \IQ$, [/mm] und es gilt [mm] $\zeta_5^4 [/mm] = [mm] -\zeta_5^3 [/mm] - [mm] \zeta_5^2 [/mm] - [mm] \zeta_5 [/mm] - 1$ Ausdurck in $1, [mm] \dots, \zeta_5^3$ [/mm] und [mm] $\zeta_5^5 [/mm] = 1$.

Damit ist [mm] $\phi(x) [/mm] = [mm] \sum_{i=0}^3 x_i \zeta_5^{-i} [/mm] = [mm] x_0 [/mm] + [mm] x_1 \zeta_5^{-1} [/mm] + [mm] x_2 \zeta_5^{-2} [/mm] + [mm] x_3 \zeta_5^{-3} [/mm] = [mm] x_0 [/mm] + [mm] x_1 \zeta_5^4 [/mm] + [mm] x_2 \zeta_5^3 [/mm] + [mm] x_3 \zeta_5^2 [/mm] = [mm] x_0 [/mm] - [mm] x_1 [/mm] (1 + [mm] \zeta_5 [/mm] + [mm] \zeta_5^2 [/mm] + [mm] \zeta_5^3) [/mm] + [mm] x_2 \zeta_5^3 [/mm] + [mm] x_3 \zeta_5^2 [/mm] = [mm] (x_0 [/mm] - [mm] x_1) [/mm] + [mm] (-x_1) \zeta_5 [/mm] + [mm] (x_3 [/mm] - [mm] x_1) \zeta_5^2 [/mm] + [mm] (x_2 [/mm] - [mm] x_1) \zeta_5^3$ [/mm] (wenn ich mich nicht verrechnet habe).

Damit dies gleich $x$ ist, muss gelten:
* [mm] $x_0 [/mm] = [mm] x_0 [/mm] - [mm] x_1$; [/mm]
* [mm] $x_1 [/mm] = [mm] -x_1$; [/mm]
* [mm] $x_3 [/mm] - [mm] x_1 [/mm] = [mm] x_2$; [/mm]
* [mm] $x_2 [/mm] - [mm] x_1 [/mm] = [mm] x_3$. [/mm]

Das ist aequivalent zu:
* [mm] $x_1 [/mm] = 0$;
* [mm] $x_2 [/mm] = [mm] x_3$. [/mm]

Es ist also $L = [mm] \{ a + b (\zeta_5 + \zeta_5^3) \mid a, b \in \IQ \}$. [/mm] Das kannst du jetzt auch einfach schoener hinschreiben :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]