matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraKörpererweiterung separable
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Körpererweiterung separable
Körpererweiterung separable < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Körpererweiterung separable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:14 Di 15.12.2009
Autor: Sabine_B.

Aufgabe
Sei K ein Körper der Charakteristik p > 0, und sei
L [mm] \supset [/mm] K eine algebraische Körpererweiterung.
1) Wir definieren [mm] L_{0} [/mm] = [mm] K[{x^p; x \in L}]. [/mm] Zeigen Sie, dass K [mm] \subset L_{0} \subset [/mm] L ein Zwischenkörper ist.
2) Sei [mm] L_{0} \not= [/mm] L. Zeigen Sie, dass ein beliebiges x [mm] \in [/mm] L\ [mm] L_{0} [/mm] algebraisch inseparabel über K ist.

Hallo Leute,
mir ist einfach nicht klar, dass [mm] L_{0} [/mm] Zwischenkröper ist. Ich adjungiere doch [mm] x^p, [/mm] s.d. der daraus entstehende Körper doch sicherlich größer wird als K. Aber woraus kann ich schließen, dass L stets größer bleibt?!?

Mitdem zweiten Teil bin ich mir genau so unsicher :-(. Wenn ich mir L ohne [mm] L_{0} [/mm] anschaue, so sind doch da nur Polynome mit dem Grad 0, also nur Konstante, drin. Kann ich daraus direkt schlussfolgern, dass diese lediglich einfache Nullstellen haben können?!?

Wie immer vielen Dank für eure Hilfe

Liebe Grüße
Sabine

        
Bezug
Körpererweiterung separable: Antwort
Status: (Antwort) fertig Status 
Datum: 07:24 Di 15.12.2009
Autor: statler

Guten Morgen Sabine!

> Sei K ein Körper der Charakteristik p > 0, und sei
>  L [mm]\supset[/mm] K eine algebraische Körpererweiterung.
>  1) Wir definieren [mm]L_{0}[/mm] = [mm]K[{x^p; x \in L}].[/mm] Zeigen Sie,
> dass K [mm]\subset L_{0} \subset[/mm] L ein Zwischenkörper ist.
>  2) Sei [mm]L_{0} \not=[/mm] L. Zeigen Sie, dass ein beliebiges x
> [mm]\in[/mm] L\ [mm]L_{0}[/mm] algebraisch inseparabel über K ist.

> mir ist einfach nicht klar, dass [mm]L_{0}[/mm] Zwischenkröper ist.
> Ich adjungiere doch [mm]x^p,[/mm] s.d. der daraus entstehende
> Körper doch sicherlich größer wird als K. Aber woraus
> kann ich schließen, dass L stets größer bleibt?!?

Das kannst du so ohne weiteres nicht schließen, deswegen ist es ja auch in 2) als Annahme vorausgesetzt. [mm] '$\subset$' [/mm] bedeutet i. a. 'enthalten oder gleich'. Du mußt also nur zeigen, daß [mm] L_0 [/mm] überhaupt ein Körper ist.

> Mit dem zweiten Teil bin ich mir genau so unsicher :-(. Wenn
> ich mir L ohne [mm]L_{0}[/mm] anschaue, so sind doch da nur Polynome
> mit dem Grad 0, also nur Konstante, drin. Kann ich daraus
> direkt schlussfolgern, dass diese lediglich einfache
> Nullstellen haben können?!?

Dein Argument verstehe ich so nicht. Wie findest du denn erstmal für $x [mm] \in [/mm] L$ \ [mm] $L_0$ [/mm] denn ein Polynom mit x als Nullstelle und Koeffizienten in [mm] $L_0$? [/mm]

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]