matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikKombination von 6 Personen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Kombinatorik" - Kombination von 6 Personen
Kombination von 6 Personen < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombination von 6 Personen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 So 04.01.2015
Autor: Mathe-Lily

Aufgabe
Von einer Gruppe von Personen, die aus 3 Frauen und 3 Männern besteht, soll ein Gruppenfoto gemacht werden.
a) Wie viele unterschiedliche Möglichkeiten für das Foto gibt es, wenn die 6 Personen nebeneinander stehen?
b) Wie viele unterschiedliche Möglichkeiten für das Foto gibt es, wenn links die 3 Männer und rechts die drei Frauen nebeneinanderstehen sollen?
c) Bei den Personen handelt es sich um 3 Ehepaare. Wie viele unterschiedliche Fotos gibt es, auf denen die 6 Personen nebeneinanderstehen, wobei die Ehepartner aber nebeneinanderstehen?
d)Wie viele Möglichkeiten gibt es für ein Foto mit drei Personen (mit Reihenfolge)?

Hallo!
Bei a, b und d denke ich, sollte es durch das "Ziehen ohne Zurücklegen mit Reihenfolge"-Prinzip gehen.
Bei der c habe ich eine logische Überlegung, aber leider keine formale Darstellung. Könnte da mal jemand drüber schauen, wie das gehen könnte und ob meine Überlegungen überhaupt richtig sind? :-)

Also wir haben 3 Pärchen, welche miteinander 6 Möglichkeiten der Ordnung haben und innerhalb der Pärchen gibt es jeweils nochmal 2 mögliche Ordnungen, das heißt pro äußerer Ordnung 6 mögliche innere Ordnungen, das wären also 6*6 mögliche Ordnungen.

Ist das irgendwie verständlich?
Und kann das stimmen?
Und wie ist das mit dem Formalen?

Grüßle, Lily

        
Bezug
Kombination von 6 Personen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 So 04.01.2015
Autor: hippias


> Von einer Gruppe von Personen, die aus 3 Frauen und 3
> Männern besteht, soll ein Gruppenfoto gemacht werden.
>  a) Wie viele unterschiedliche Möglichkeiten für das Foto
> gibt es, wenn die 6 Personen nebeneinander stehen?
>  b) Wie viele unterschiedliche Möglichkeiten für das Foto
> gibt es, wenn links die 3 Männer und rechts die drei
> Frauen nebeneinanderstehen sollen?
>  c) Bei den Personen handelt es sich um 3 Ehepaare. Wie
> viele unterschiedliche Fotos gibt es, auf denen die 6
> Personen nebeneinanderstehen, wobei die Ehepartner aber
> nebeneinanderstehen?
>  d)Wie viele Möglichkeiten gibt es für ein Foto mit drei
> Personen (mit Reihenfolge)?
>  Hallo!
>  Bei a, b und d denke ich, sollte es durch das "Ziehen ohne
> Zurücklegen mit Reihenfolge"-Prinzip gehen.
>  Bei der c habe ich eine logische Überlegung, aber leider
> keine formale Darstellung. Könnte da mal jemand drüber
> schauen, wie das gehen könnte und ob meine Überlegungen
> überhaupt richtig sind? :-)
>  
> Also wir haben 3 Pärchen, welche miteinander 6
> Möglichkeiten der Ordnung haben und innerhalb der Pärchen
> gibt es jeweils nochmal 2 mögliche Ordnungen, das heißt
> pro äußerer Ordnung 6 mögliche innere Ordnungen, das
> wären also

Das ist soweit richtig. Aber die Anzahl der inneren Anordnungen ist nicht $6$, sondern $8$, da jede innere Anordnung mit jeder anderen kombiniert werden kann.

> 6*6 mögliche Ordnungen.
>  
> Ist das irgendwie verständlich?
>  Und kann das stimmen?
>  Und wie ist das mit dem Formalen?
>  
> Grüßle, Lily


Bezug
                
Bezug
Kombination von 6 Personen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 So 04.01.2015
Autor: Mathe-Lily

Hallo!
Vielen Dank für die schnelle Antwort!

> > Also wir haben 3 Pärchen, welche miteinander 6
> > Möglichkeiten der Ordnung haben und innerhalb der Pärchen
> > gibt es jeweils nochmal 2 mögliche Ordnungen, das heißt
> > pro äußerer Ordnung 6 mögliche innere Ordnungen, das
> > wären also
> Das ist soweit richtig. Aber die Anzahl der inneren
> Anordnungen ist nicht [mm]6[/mm], sondern [mm]8[/mm], da jede innere
> Anordnung mit jeder anderen kombiniert werden kann.

Ah! Also haben wir 6*8 Möglichkeiten!

Und wir kann ich das formal darstellen?

Grüßle, Lily


Bezug
                        
Bezug
Kombination von 6 Personen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 So 04.01.2015
Autor: hippias

Ich weiss nicht, was Du mit formal darstellen meinst. Ich finde Deine Erklaerungen sehr gut und ausreichend. Meinst Du vielleicht so etwas: [mm] $(\alpha, \beta)$ [/mm] heisst innere Anordnung, wenn [mm] $\alpha,\beta\in \{m,w\}$ [/mm] und [mm] $\alpha\neq \beta$ [/mm] gilt. Sei [mm] $\Pi$ [/mm] die Menge aller inneren Anordnungen. [mm] $(\sigma, \tau)$ [/mm] heisst Aufstellung [mm] $\sigma$ [/mm] mit innerer Anordnung [mm] $\tau$, [/mm] wenn [mm] $\sigma$ [/mm] eine Permutation von [mm] $\{1,2,3\}$ [/mm] ist und [mm] $\tau:\{1,2,3\}\to \Pi$ [/mm] eine beliebige Abbildung ist.

Sei $M$ die Menge aller Aufstellungen mit inneren Anordnungen. Dann gilt [mm] $\abs{M}= 6\cdot [/mm] 8$.

Bezug
                                
Bezug
Kombination von 6 Personen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:33 So 04.01.2015
Autor: Mathe-Lily

Ja, so was in der Richtung.
Vielen Dank!! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4m 6. schokoschnecke
UAnaRn/Extremwerte mit Nebenbedingung
Status vor 25m 10. Maxi1995
UAnaR1/Reaktion - erwünscht
Status vor 2h 49m 2. fred97
DiffGlGew/Lösung der DGL bestimmen
Status vor 2h 54m 2. fred97
SLinA/Eigenvektor bestimmen
Status vor 9h 14m 8. Gonozal_IX
UAnaR1Funk/L Beweis ohne Logarithmusdef.
^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]