matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikKombination von Geldscheinen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Kombination von Geldscheinen
Kombination von Geldscheinen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombination von Geldscheinen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:19 So 02.05.2004
Autor: Rauchwolke

Hallo zusammen,

ich komme mit einer Aufgabe leider nicht voran:

Wie oft kann man 250,- € wechseln (in Scheinen)?

Sicher gibt es dafür eine Formel, aber alle Möglichkeiten, die mir eingefallen sind, waren falsch.

Das Ergebnis soll 571 sein.

Danke schon mal für Eure Antworten... Eure Rauchwolke ;-)

        
Bezug
Kombination von Geldscheinen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 So 02.05.2004
Autor: Oliver

Hallo Rauchwolke,

ob es dafür wirklich eine Formel gibt, bezweifle ich stark. Rein methodisch würde ich wie folgt vorgehen: ich schaue mir alle 50 mit Scheinen möglichen Beträge von 5 EUR bis 250 EUR an und schaue, wieviele mögliche Kombinationen es gibt, auf diese zu kommen. Dabei fange ich bei 5 EUR an und arbeite mich hoch. Das hat den Vorteil, das ich bereits gewonnene Erkenntnisse einfließen lassen kann und ich quasi nur "eine Stufe niedriger" gehen muss - da ich es nicht besser erklären kann, hier am Beispiel:

01. 5 EUR: 1 Möglichkeit (1 x 5-EUR)

02. 10 EUR: Entweder ich nehme als erstes einen 10 EUR Schein oder einen 5 EUR-Schein. Im ersten Fall bin ich fertig (1 Möglichkeit), im zweiten habe ich noch einen Restbetrag von 5 EUR und bin im Fall 01 (1 Möglichkeit) -> Insgesamt 2 Möglichkeiten.

03. 15 EUR: Entweder ich nehme als erstes einen 10 EUR Schein oder einen 5 EUR-Schein. Im ersten Fall habe ich einen Restbetrag von 5 EUR und bin im Fall 01 (1 Möglichkeit). Im zweiten Fall bin ich im Fall 02 (2 Möglichkeiten) -> Insgesamt 3 Möglichkeiten.

04. 20 EUR: Entweder ich nehme als erstes einen 20 EUR Schein (fertig, eine Möglichkeit), einen 10 EUR Schein (Restbetrag 10 EUR, 2 Möglichkeiten) oder einen 5 EUR-Schein (Restbetrag 15 EUR, 3 Möglichkeiten) -> Insgesamt 6 Möglichkeiten.

05. 25 EUR: Entweder ich nehme als erstes einen 20 EUR Schein (Rest 5 EUR, eine Möglichkeit), einen 10 EUR Schein (Restbetrag 15 EUR, 3 Möglichkeiten) oder einen 5 EUR-Schein (Restbetrag 15 EUR, 6 Möglichkeiten) -> Insgesamt 10 Möglichkeiten.

06. 30 EUR: Entweder ich nehme als erstes einen 20 EUR Schein (Rest 10 EUR, zwei Möglichkeiten), einen 10 EUR Schein (Restbetrag 20 EUR, 6 Möglichkeiten) oder einen 5 EUR-Schein (Restbetrag 25 EUR, 10 Möglichkeiten) -> Insgesamt 18 Möglichkeiten.

Wenn man das ganze rekursiv definiert, kommt man auf folgendes (inspiriert durch []http://www.research.att.com/projects/OEIS?Anum=A060945):

a(n)=0 für n<0
a(0)=1
a(1)=1
a(n)=a(n-1)+a(n-2)+a(n-4)+a(n-10)+a(n-20)+a(n-40)+a(n-100) für n>1

Da die mit Scheinen möglichen Beträge allesamt durch 5 teilbar sind, habe ich das Ganze normiert, so daß a(n) der Anzahl der Wechsel-Möglichkeiten für 5n EUR entspricht.

Damit hätten wir eine schöne Darstellung der Möglichkeiten mit Beachtung der Reihenfolge. Leider habe ich keinerlei Idee, wie wir von hier die gesuchte Anzahl der Möglichkeiten ohne Beachtung der Reihenfolge erhalten können ....

Mach's gut
Oliver


Bezug
        
Bezug
Kombination von Geldscheinen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Mo 03.05.2004
Autor: Paulus

Hallo Rauchwolke,

wie dir Oliver bereits erklärt hat, gibt es wohl kaum eine einfache Formel für dein Problem.

Ich bin das Ganze mal von einer anderen Betrachtungsweise angegangen:

Mit der Varianlen [mm]a, b, c, d, e[/mm] und [mm]f[/mm] für die Geldscheine 5 €, 10 €, 20 €, 50 €, 100 € und 200 € respektive habe ich mal die folgende Formel aufgestellt:

[mm]5a+10b+20c+50d+100e+200f = 250[/mm] oder mit 5 gekürzt:

[mm]a+2b+4c+10d+20e+40f = 50[/mm]

Dieser Gleichung entspricht im 6-dimensionalen Vektorraum eine 5-dimensionale Hyperebene mit folgender Parameterdarstellung:

[mm]\begin{pmatrix} 50 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}+c \begin{pmatrix} -4 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}+d \begin{pmatrix} -10 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}+e \begin{pmatrix} -20 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}+f \begin{pmatrix} -40 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}[/mm]    

Die erste Koordinate gibt dabei die Anzahl 5er-Scheine, die zweite die Anzahl 10er-Scheine usw. an.

Die Parameter [mm]b[/mm] bis [mm]f[/mm] dürfen dabei für die Darstellung der Ebene beliebig gewählt werden. Für unsere Anwendung gibt es aber Einschränkungen für die Parameter:
1) sie dürfen nur natürliche Zahlen inklusive [mm]0[/mm] sein
2) Zusammen darf der Bertag von 250 € nicht überschritten werden, was sich in unserer Formel so niederschlägt:
[mm]0 \leq b+2c+5d+10e+20f \leq 25[/mm]

Ich habe mit einem kleinen Programm die möglichen Werte für die Parameter zusammengestellt. Vielleicht hilft dir das Ergebnis, die Angahl Möglichkeiten auf raffinierte Art (Summenformeln) zu zählen.

[a]"Euro.txt"

Das mit dem Hochladen scheint noch nicht so zu gelingen, ich versuchs nachher nochmals...


Dateianhänge:
Anhang Nr. 1 (Typ: txt) [nicht öffentlich]
Bezug
        
Bezug
Kombination von Geldscheinen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Mo 03.05.2004
Autor: Stefan

Hallo,

für eine ausführliche Antwort fehlen mir Zeit und Motivation, aber ich habe mir (bereits gestern) eine recht elementare Lösung überlegt, die man auch in einer (allerdings fiesen, mit vier ineinander verschachtelten Summenzeichen versehenen) geschlossenen Form angeben kann. Im Wesentlichen beruht sie darauf, dass man die 5-er-Scheine natürlich vergessen kann (die ergeben sich als Reste ja automatisch) und sich bei gegebenen "hohen" Scheinen überlegt, wie man diese durch 20-Euro-Scheine ersetzen kann. (Die anschließende Ersetzung durch 10-Euro-Scheine ist dann trivial.) Dabei kommt man dann auf Summen wie

[mm]\sum_{i=1}^{\frac{50j}{20}+1} (2i-1)[/mm]

bzw.

[mm]\sum_{i=1}^{[\frac{50j}{20}]+1} 2i[/mm]

(abhängig von [mm]j[/mm], d.h. ob [mm]j[/mm] gerade oder ungerade ist), wobei [mm][x][/mm] die Gaußklammer ist.

Naja, auf diese Weise erhält man dann mit wenig Aufwand

[mm](1+12+36+72+121+182) + (1+12+36+72) + (1+12) + (1+12) = 571[/mm]

Möglichkeiten, wie angegeben.

Vielleicht hat ja jemand Lust die fehlenden Schritte zu ergänzen. Ist nicht schwierig (okay, für einen Schüler schon), aber viel zu schreiben.

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]