matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikKombinatorik. Aufgabe mit Kuge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Kombinatorik. Aufgabe mit Kuge
Kombinatorik. Aufgabe mit Kuge < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik. Aufgabe mit Kuge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:35 Di 10.02.2009
Autor: itstudent

Aufgabe
Es gibt 10 Kugel in der Urne. 6 Weiße und 4 Schwarze.
Wir ziehen aus der Urne 5 Mal mit zurücklegen. Zufallsvariable X gleicht den Anzahl der gezogenen weißen Kugel.
a) Bestimmen Sie Verteilung
b) Erwartungswert
c) Varianz

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Meine Gedanken:
a) Zuerst muss ich Zufallsvariable definieren:
x=5, falls 5 weiße Kugel gezogen wurden
x=4, falls 4 weiße Kugel gezogen wurden
x=3, falls 3 weiße Kugel gezogen wurden
x=2, falls 2 weiße Kugel gezogen wurden
x=1, fall 1 weißes Kugel gezoden worden ist
x=0, sonst

Nun möchte ich die Wahrscheinlichkeit für die einzelne Ereignise berechnen:
[mm] P(x=5)=(6/10)^5=7776/100000 [/mm]
[mm] P(x=4)=(6/10)^4=12960/10000 [/mm]
[mm] P(x=3)=(6/10)^3=2700/10000 [/mm]
[mm] P(x=2)=(6/10)^2=36000/100000 [/mm]
[mm] P(x=1)=(6/10)^1=60000/100000 [/mm]

P(X=0) ??? wie kann ich Wahrscheinlichkeit für den Fall berechnen, dass keine weiße kugel gezogen worden sind?

Stimmen meine Berechnungen oder habe ich totales Quatsch geschriben?

        
Bezug
Kombinatorik. Aufgabe mit Kuge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Di 10.02.2009
Autor: luis52

Moin itstudent,

[willkommenmr]


[]Da schau her.

vg Luis
                                        

Bezug
                
Bezug
Kombinatorik. Aufgabe mit Kuge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Di 10.02.2009
Autor: itstudent

Danke, jetzt habe ich verstanden. Noch eine Frage habe ich:

Wie komme ich auf die Idee, dass es eine Binomialverteilung ist?

Bezug
                        
Bezug
Kombinatorik. Aufgabe mit Kuge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Di 10.02.2009
Autor: abakus


> Danke, jetzt habe ich verstanden. Noch eine Frage habe
> ich:
>  
> Wie komme ich auf die Idee, dass es eine Binomialverteilung
> ist?

Wenn es sich um eine Bernoulli-Kette handelt.
Kennzeichen:
1) mehrfache Durchführung eines Bernoulli-Experiments MIT UNVERÄNDERTEN Bedingungen (hier erfüllt, da Ziehen mit Zurücklegen - jedes Mal stehen die gleichen Kugeln zur Auswahl)
2) wie schon bei 1) gesagt: es handelt sich um ein Bernoulli-Experiment (nur zwei mögliche Ausgänge: hier schwarz oder nicht schwarz bzw. weiß oder nicht weiß)
Gruß Abakus

Bezug
                                
Bezug
Kombinatorik. Aufgabe mit Kuge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 10.02.2009
Autor: itstudent

und allgemein? Wenn keine Bernulli-Kette da ist, dann ist es 100% keine Binomial Verteilung?

Bezug
                                        
Bezug
Kombinatorik. Aufgabe mit Kuge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Di 10.02.2009
Autor: abakus


> und allgemein? Wenn keine Bernulli-Kette da ist, dann ist
> es 100% keine Binomial Verteilung?

Richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]