matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikKombinatorik
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Kombinatorik
Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Aufgabe/ Frage
Status: (Frage) beantwortet Status 
Datum: 15:41 Sa 14.05.2005
Autor: melchen

Hallo alle Zusammen! Ich habe hier eine Aufgabe bei der ich mir bei meinem Ansatz nicht wirklich sicher bin und auch nicht wirklich weiter komme.. Hoffentlich kann jemand meine Lösung beurteilen und mir ein paar Denkanstöße geben. Vielen Dank im Vorraus!!

Aufgabe: Für ein Schulfest soll aus 12 Mitgliedern der Schülerverwaltung ein vierköpfiger Festausschuß gebildet werden
a) Wie vieler Möglichkeiten gibt es, den Festausschuß zusammenzusetzten?

Meine Idee hierbei war, dass es doch  12 über 4 Möglichkeiten geben muss oder??

b) Wie viele Möglichkeiten gibt es für die Zusammensetzung des Festausschusses, wenn zwei bestimmte Schüler der 12 Mitglieder auf keinern Fall zusammen im Festausschuß mitarbeiten wollen

Bei dieser Aufgabe bin ich etwas ratlos. Ich dachte mir, dass man von den 12 über 4 Möglichkeiten auf jeden fall noch was andres abziehen muss oder es wird ganz anders gerechnet.. Vielleicht mit Fakultät? ich bin sehr ratlos wie ihr seht..Bitte helft mir!!

Liebe Grüße Melchen

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Sa 14.05.2005
Autor: banachella

Hallo melchen!

Bei der ersten Aufgabe hast du recht: Es gibt [mm] $\vektor{12\\4}$ [/mm] Möglichkeiten, den Festausschuss zu besetzen.

Bei der zweiten Aufgabe gibt es zwei Wege zum Ziel, wie's dir lieber ist:
1. Von allen möglichen Kombinationen ziehst du die Anzahl ab, bei denen die zwei zerstrittenen Schüler dabei wären: [mm] $\vektor{12\\4}-\vektor{10\\2}$. [/mm]

2. Du addierst die Möglichkeiten, bei denen keiner, und bei denen einer der beiden im Festausschuss sitzt: [mm] $\vektor{10\\4}+2*\vektor{10\\3}$. [/mm]

Gruß, banachella


Bezug
                
Bezug
Kombinatorik: Danke!/ Frage
Status: (Frage) beantwortet Status 
Datum: 10:11 So 15.05.2005
Autor: melchen

Hey!
Danke für diese genaue antwort..Ich kann alles recht gut nachvollziehen. Es bleibt nur noch eine kleine Frage: wieso hast du bei der b) nur noch eine 10 anstatt eine 12 oben stehen ?.. muss man die zwei, die in den Ausschuß sitzen etwa von allen abziehen?

Wäre lieb wenn das noch jemand beantworten könnte..
Liebe Grüße Melchen

Bezug
                        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 So 15.05.2005
Autor: Max

Hallo Melchen,

der Binomialkoeffizient ${ 10 [mm] \choose [/mm] 4}$ gibt an, wie viele Möglichkeiten es gibt, vier Leute aus den 10 Mitgliedern der Schülerverwaltung auszuwählen, die keine Probleme mit der Zusammenarbeit haben. Es gibt noch weitere Möglichkeiten den Festausschuss zu besetzten, man kann aus den 10 Leuten die sich nicht streiten 3 auswählen und dazu einen der beiden Streithähne strecken. Das ergbit jeweils noch einmal die ${ 10 [mm] \choose [/mm] 3}$ Möglichkeiten, also insgesamt: ${ 10 [mm] \choose [/mm] 4}+ [mm] 2\cdot [/mm]  { 10 [mm] \choose [/mm] 3}$.

Gruß Max

Bezug
                                
Bezug
Kombinatorik: Vielen Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:45 Mo 16.05.2005
Autor: melchen

Hey
Danke schön für eure schnelle Hilfe habs jetzt entgültig verstanden..!!!
*freu* Trotz allem wird das bestimmt nicht das letzte mal gewesen sein, wo ich in Mathe meine Schwierigkeiten hatte..Deshalb bin ich euch auf jeden Fall sehr dankbar..
Liebe Grüße
Melchen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]