matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKommutativer Ring IQ
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gruppe, Ring, Körper" - Kommutativer Ring IQ
Kommutativer Ring IQ < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutativer Ring IQ: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:52 Fr 11.11.2011
Autor: Deztiny

Aufgabe
Sei R die Menge aller Abbildungen von [mm] \IQ [/mm] in sich selbst, R = { f : [mm] \IQ \to \IQ}, [/mm] mit der punktweisen Addition und Multiplikation:
   f + g : [mm] \IQ \to \IQ, [/mm] x [mm] \to [/mm] f(x) + g(x),
   f [mm] \* [/mm] g : [mm] \IQ \to \IQ, [/mm] x [mm] \to [/mm] f(x) [mm] \* [/mm] g(x)
Zeigen Sie, dass (R, +, [mm] \* [/mm] ) ein kommutativer Ring ist.

Hi, ich wollte wissen, ob meine Lösung so korrekt ist:

"Zeige, dass R kommutativer Ring ist.
Zeige zuerst, dass (R, +) abelsche Gruppe ist. (Definition eben)
Die Abbildung f + g : [mm] \IQ \to \IQ, [/mm] x [mm] \to [/mm] f(x) + g(x)

... ist assoziativ, falls:
1.) [mm] \forall [/mm] f, g, h [mm] \in [/mm] R : (f + g) + h = f + (g + h)
Wende auf x an...
[mm] \Rightarrow [/mm] ((f + g) + h) (x) = (f + (g + h)) (x) , [mm] \forall [/mm] x [mm] \in \IQ [/mm]
[mm] \Rightarrow [/mm] (f + g) (x) + h (x) = f(x) + (g + h) (x)
[mm] \Rightarrow [/mm] f(x) + g(x) + h(x) = f(x) + g(x) + h(x)
Damit ist f + g assoziativ!

... ist kommutativ, falls,
2.) [mm] \forall [/mm] f, g [mm] \in [/mm] R : (f + g) = (g + f)
[mm] \Rightarrow [/mm] (f + g) (x) = (g + f) (x) [mm] \forall [/mm] x [mm] \in \IQ [/mm]
[mm] \Rightarrow [/mm] f(x) + g(x) = g(x) + f(x)
Damit ist f + g kommutativ

... hat neutrales Element e(x) [mm] \in [/mm] R, mit,
3.) [mm] \forall [/mm] f [mm] \in [/mm] R : e + f = f = f + e
[mm] \Rightarrow [/mm] e(x) + f(x) = f(x) = f(x) + e(x)
(wähle e(x) = 0)
[mm] \Rightarrow [/mm] 0 + f(x) = f(x) = f(x) + 0
Damit ist 0 neutrales Element.

... hat inverses Element, falls,
4.) [mm] \forall [/mm] f [mm] \in [/mm] R : [mm] \exists [/mm] h [mm] \in [/mm] R zu f, mit:
f + h = e = h + f
f(x) + h(x) = e = h(x) + f(x)
(wähle h(x) = - f(x) )
f(x) + (-f(x)) = 0 = e...
Damit ist - f(x) inverses element.

[mm] \Rightarrow [/mm] Damit ist (R, +) abelsche Gruppe.

Zeige nun noch:
(R, [mm] \* [/mm] ) ist Monoid... also assoziativ und neutr. Element.
... assoziativ:
[mm] \forall [/mm] f, g, h [mm] \in [/mm] R : (f [mm] \* [/mm] g) [mm] \* [/mm] h = f [mm] \* [/mm] (g [mm] \* [/mm] h)
[mm] \Rightarrow [/mm] ((f [mm] \* [/mm] g) [mm] \* [/mm] h ) (x) = (f [mm] \* [/mm] (g [mm] \* [/mm] h)) (x) , [mm] \forall [/mm] x [mm] \in \IQ [/mm]
[mm] \Rightarrow [/mm] (f [mm] \* [/mm] g) (x) [mm] \* [/mm] h(x) = f(x) [mm] \* [/mm] (g [mm] \* [/mm] h) (x)
[mm] \Rightarrow [/mm] f(x) [mm] \* [/mm] g(x) [mm] \* [/mm] h(x) = f(x) [mm] \* [/mm] g(x) [mm] \* [/mm] h(x)
Damit ist (R, [mm] \* [/mm] ) assoziativ..

Folgende Beweise erfolgen analog (wie oben, eben dass ich meine Abbildungen auf alle x der Menge [mm] \IQ [/mm] anwende, bin nur zu faul es im Editor hier auszuführen):
Neutrales Element = 1... stimmt
1 [mm] \not= [/mm] 0 ... stimmt
Distributivgesetze ... sind beide anwendbar ... stimmt

[mm] \Rightarrow [/mm] (R, +, [mm] \* [/mm] ) ist kommutativer Ring!"

Stimmt das so?

mfg,
Dezt

P.S.:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kommutativer Ring IQ: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Sa 12.11.2011
Autor: schachuzipus

Hallo Deztiny,

> Sei R die Menge aller Abbildungen von [mm]\IQ[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

in sich selbst, R

> = { f : [mm]\IQ \to \IQ},[/mm] mit der punktweisen Addition und
> Multiplikation:
>     f + g : [mm]\IQ \to \IQ,[/mm] x [mm]\to[/mm] f(x) + g(x),
>     f [mm]\*[/mm] g : [mm]\IQ \to \IQ,[/mm] x [mm]\to[/mm] f(x) [mm]\*[/mm] g(x)
>  Zeigen Sie, dass (R, +, [mm]\*[/mm] ) ein kommutativer Ring ist.
>  Hi, ich wollte wissen, ob meine Lösung so korrekt ist:
>  
> "Zeige, dass R kommutativer Ring ist.
>  Zeige zuerst, dass (R, +) abelsche Gruppe ist. (Definition
> eben)
>  Die Abbildung f + g : [mm]\IQ \to \IQ,[/mm] x [mm]\to[/mm] f(x) + g(x)
>  
> ... ist assoziativ, falls:
>  1.) [mm]\forall[/mm] f, g, h [mm]\in[/mm] R : (f + g) + h = f + (g + h)
>  Wende auf x an...
>  [mm]\Rightarrow[/mm]

Was soll das [mm] $\Rightarrow$ [/mm] bedeuten? Du gehst hier und in der Folge sehr sorglos mit den Implikationen um!

Bedenke, dass 2 Funktionen gleich sind, wenn sie für jedes Argument denselben Funktionswert liefern

Formal fange so an:

Seien [mm] $f,g,h\in [/mm] R$ und sei [mm] $x\in\IQ$ [/mm] beliebig.

Dann ist $((f+g)+h)(x)=.....=(f+(g+h))(x)$

> ((f + g) + h) (x) = (f + (g + h)) (x) ,
> [mm]\forall[/mm] x [mm]\in \IQ[/mm]
>  [mm]\Rightarrow[/mm] (f + g) (x) + h (x) = f(x) +
> (g + h) (x)
>  [mm]\Rightarrow[/mm] f(x) + g(x) + h(x) = f(x) + g(x) + h(x)
>  Damit ist f + g assoziativ! ([ok])
>  
> ... ist kommutativ, falls,
>  2.) [mm]\forall[/mm] f, g [mm]\in[/mm] R : (f + g) = (g + f)
>  [mm]\Rightarrow[/mm] (f + g) (x) = (g + f) (x) [mm]\forall[/mm] x [mm]\in \IQ[/mm]
>  
> [mm]\Rightarrow[/mm] f(x) + g(x) = g(x) + f(x)
>  Damit ist f + g kommutativ

Das ist wieder kraus aufgeschrieben, aber so auf der "Argumentebene" läuft das ab ...

>  
> ... hat neutrales Element e(x) [mm]\in[/mm] R,[haee]

$e(x)$ ist für ein [mm] $e\in [/mm] R$ doch eine rationale Zahl ...

> mit,
>  3.) [mm]\forall[/mm] f [mm]\in[/mm] R : e + f = f = f + e
>  [mm]\Rightarrow[/mm] e(x) + f(x) = f(x) = f(x) + e(x)
>  (wähle e(x) = 0)
>  [mm]\Rightarrow[/mm] 0 + f(x) = f(x) = f(x) + 0
>  Damit ist 0 neutrales Element.

Besser so: wähle [mm] $e\in [/mm] R$ mit [mm] $e:\IQ\to\IQ, x\mapsto [/mm] 0$

Dann gilt für jedes [mm] $f\in [/mm] R$ und bel. [mm] $x\in \IQ$ [/mm]

$(f+e)(x)=f(x)+e(x)=...$

>  
> ... hat inverses Element, falls,
>  4.) [mm]\forall[/mm] f [mm]\in[/mm] R : [mm]\exists[/mm] h [mm]\in[/mm] R zu f, mit:
>  f + h = e = h + f
>  f(x) + h(x) = e = h(x) + f(x)
>  (wähle h(x) = - f(x) )
>  f(x) + (-f(x)) = 0 = e...
>  Damit ist - f(x) inverses element.

Stimmt!

>  
> [mm]\Rightarrow[/mm] Damit ist (R, +) abelsche Gruppe. [ok]
>  
> Zeige nun noch:
>  (R, [mm]\*[/mm] ) ist Monoid... also assoziativ und neutr.
> Element.
>  ... assoziativ:
>  [mm]\forall[/mm] f, g, h [mm]\in[/mm] R : (f [mm]\*[/mm] g) [mm]\*[/mm] h = f [mm]\*[/mm] (g [mm]\*[/mm] h)
>  [mm]\Rightarrow[/mm] ((f [mm]\*[/mm] g) [mm]\*[/mm] h ) (x) = (f [mm]\*[/mm] (g [mm]\*[/mm] h)) (x) ,
> [mm]\forall[/mm] x [mm]\in \IQ[/mm]
>  [mm]\Rightarrow[/mm] (f [mm]\*[/mm] g) (x) [mm]\*[/mm] h(x) = f(x)
> [mm]\*[/mm] (g [mm]\*[/mm] h) (x)
>  [mm]\Rightarrow[/mm] f(x) [mm]\*[/mm] g(x) [mm]\*[/mm] h(x) = f(x) [mm]\*[/mm] g(x) [mm]\*[/mm] h(x)
>  Damit ist (R, [mm]\*[/mm] ) assoziativ..

Jo, bissl sauberer aufschreiben (siehe oben, dann passt es)

> Folgende Beweise erfolgen analog (wie oben, eben dass ich
> meine Abbildungen auf alle x der Menge [mm]\IQ[/mm] anwende, bin nur
> zu faul es im Editor hier auszuführen):
>  Neutrales Element = 1... stimmt
>  1 [mm]\not=[/mm] 0 ... stimmt
>  Distributivgesetze ... sind beide anwendbar ... stimmt
>  
> [mm]\Rightarrow[/mm] (R, +, [mm]\*[/mm] ) ist kommutativer Ring!"
>  
> Stimmt das so?

Jo, im Großen und Ganzen!

>  
> mfg,
>  Dezt
>  
> P.S.:
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus  


Bezug
                
Bezug
Kommutativer Ring IQ: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Sa 12.11.2011
Autor: Deztiny

Danke für die Korrektur.

Genau an deinen KOrrigierten Stellen war ich mir nciht sicher, ob das so formal ok ist^^ (vor allem beim Neutralen Element).

Ich werds entsprechend verbessern, vom Sinn her habe ich es verstanden.
(Ist für mich beantwortet!)

mfg,
Dezt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]