matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationKommutator
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integration" - Kommutator
Kommutator < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kommutator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Fr 02.10.2009
Autor: Sacha

Aufgabe
Es seinen [mm] L_{1}=\summe_{i=1}^{n}a_{i}\bruch{d}{dx_{i}} [/mm] und [mm] L_{2}=\summe_{i=1}^{n}b_{i}\bruch{d}{dx_{i}} [/mm] für eine offene Menge U wobei [mm] a_{i}, b_{i} \in C^{\infty}(U). [/mm] Man berechne den Kommutator.

Kann mir jemand sagen wie ich die Sache ausrechnen kann. Ich weiss wie ein Kommutator sich berechnen kann doch ich weiss nicht wie man es vereinfacht-

        
Bezug
Kommutator: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Fr 02.10.2009
Autor: felixf

Hallo!

> Es seinen [mm]L_{1}=\summe_{i=1}^{n}a_{i}\bruch{d}{dx_{i}}[/mm] und
> [mm]L_{2}=\summe_{i=1}^{n}b_{i}\bruch{d}{dx_{i}}[/mm] für eine
> offene Menge U wobei [mm]a_{i}, b_{i} \in C^{\infty}(U).[/mm] Man
> berechne den Kommutator.

Ich vermute, du meinst einen Kommutator der Form $[A, B] = A B - B A$? Was genau ist hier die Multiplikation? Sprich, in welchem Raum arbeitest du?

>  Kann mir jemand sagen wie ich die Sache ausrechnen kann.
> Ich weiss wie ein Kommutator sich berechnen kann doch ich
> weiss nicht wie man es vereinfacht-

Nun, fuer den Raum, in dem du arbeitest, wirst du irgendwelche Rechenregeln haben, z.B. wie man [mm] $\frac{d}{d x_i}$ [/mm] und [mm] $\frac{d}{d x_j}$ [/mm] fuer $i [mm] \neq [/mm] j$ tauscht oder sonstwas. Und was man z.B. mit $f [mm] \frac{d}{d x_i} [/mm] g [mm] \frac{d}{d x_j}$ [/mm] machen kann. Die musst du natuerlich verwenden.

Versuch doch mal den Spezialfall $n = 2$ (und evtl. $n = 3$) zu behandeln. Vielleicht bekommst du da eine Idee.

LG Felix




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]