Kommutator < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 12:42 Do 28.01.2010 | Autor: | moerni |
Aufgabe | Sei n [mm] \ge [/mm] 2 und sei K ein Körper. Die Gruppe [mm] SL_n(K) [/mm] ist ihre eigene Kommutatorgruppe, außer in den beiden Fällen n=2 und |K| [mm] \le [/mm] 3. |
Hallo.
Was ich bisher habe: ich konnte eine Elementarmatrix (Matrix der Form [mm] T_{ij}(a)=I_n+aE_{ij} [/mm] ) als Kommutator in der Gruppe [mm] SL_n(K) [/mm] darstellen für n=2. Jede Matrix in [mm] SL_n(K) [/mm] ist ein Produkt von endlich vielen Elementarmatrizen.
Fragen:
1. wie zeige ich, dass [mm] SL_n(K) [/mm] nicht ihre eigene Kommutatorgruppe ist in den Fällen n=2 und |K|=2 bzw |K|=3? Ich könnte hingehen und jede mögliche Matrixkombination durchrechnen. Viel Arbeit, das muss doch eleganter gehen...? Ich konnte zwar eine Elemementarmatrix als Kommutator in der Gruppe [mm] SL_n(K) [/mm] darstellen und in meiner Zerlegung wäre |K|=2, |K|=3 nicht möglich, aber es gibt doch noch sicherlich viele andere Zerlegungen, in denen |K|=2 evtl möglich wäre...
2. Ich muss zeigen: Seien x,y [mm] \in SL_n(K) \Rightarrow [/mm] [x,y] [mm] \in SL_n(K) [/mm] und andersrum. Hier habe ich vor lauter Matrizen völlig den Überblick verloren... ich habe angefangen: Sei [mm] x=T_1...T_k, y=F_1...F_k [/mm] Zerlegung in Elementarmatrizen. [mm] T_1=ABA^{-1}B^{-1} [/mm] usw Elementarmatrix als Kommutator in der Gruppe [mm] SL_n(K),... [/mm] hier verliere ich den Überblick.
3. Wie kann ich über den Fall n=2 auf alle n [mm] \in \mathbb [/mm] N schließen?
Über eine Antwort wäre ich sehr dankbar,
moerni
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Sa 30.01.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|