matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenKompl. Folgen:IterationVonF(z)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "komplexe Zahlen" - Kompl. Folgen:IterationVonF(z)
Kompl. Folgen:IterationVonF(z) < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompl. Folgen:IterationVonF(z): LösungsstrategieFürExpl.Funkt.
Status: (Frage) beantwortet Status 
Datum: 23:14 Di 25.05.2010
Autor: Mathhoover

Aufgabe 1
[mm] z_{n+1} [/mm] = [mm] f(z_{n}) [/mm]
Berechne [mm] z_{2},z_{5} [/mm] und [mm] z_{n}. [/mm]
10.b) f(z) = (1+i)z+2i ; [mm] z_{1} [/mm] = 2-i

Aufgabe 2
11.a) f(z) = (3+z)/(1-z) ; [mm] z_{1}=2 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen
Ich suche eine allgemeingültige Lösungsstrategie um das n-te Glied zn für jede beliebige Funktion f(z) herauszufinden. Also eine Strategie um von der rekursiven Funktion zu einer expliziten zu gelangen. Hier ein Lösungsvorschlag meines Mathelehrers, den ich aber nicht auf die 2. Aufgabe anwenden konnte.
zu Aufgabe 10.b):
[mm] z_{1}=2-i [/mm]
[mm] z_{2}=(2-i)(1+i)+2i [/mm]
[mm] z_{3}=((2-i)(1+i)+2i)(1+i)+2i=(2-i)(1+i)^2+2i(1+i)+2i [/mm]
[mm] z_{4}=(((2-i)(1+i)+2i)(1+i)+2i)(1+i)+2i=(2-i)(1+i)^3+2i(1+i)^2+2i(1+i) [/mm]
u.s.w.
Die Wertänderung vom einen zum nächsten Glied (mit einem Glied meine ich immer die Teile des Terms, die [mm] '2i(1+i)^{n}' [/mm] beinhalten)  hat den Charakter einer geometrischen Folge, darum allgemein:
[mm] z_{n} [/mm] = [mm] (2-i)(1+i)^{n-1}+2i(1+i)^{n-2}+2i(1+i)^{n-3} [/mm]
[mm] +2i(1+i)^{n-4}+...+2i(1+i)^{0} [/mm]
[mm] =(2-i)(1+i)_{n-1}+2i*(Mal)\(1+i)^{i}_{i=0}^{n-2} [/mm] = [mm] summe_{n} [/mm]
Und jetzt ein Trick (verallgemeinert):
[mm] summe_{n}=a_{1}+a_{1}*(Mal)q+a_{1}*q^{2}+a_{1}*q^{3}+...+a_{1}*q^{n-1} [/mm]
---> ganze Gleichung mit q multiplizieren, dann die 'alte' minus die 'neue' Gleichung subtrahieren:
[mm] summe_{n}-q*summe_{n}=a_{1}*q+a_{1}*q^{2}+a_{1}*q^{3}+ [/mm]
[mm] ...+a_{1}*q^{n-1}+a_{1}*q^{n} [/mm]
daraus ergibt sich die 'Formel':
[mm] summe_{n}=((1-i)^{n})*a_{1}/(1-q) [/mm]
[mm] z_{n} [/mm] ist also:
[mm] z_{n} [/mm] = [mm] (4-i)(1+i)^{n-1}-2 [/mm]



In Aufgabe 11.a) kann ich nun zwar eine Regelmässigkeit feststellen (die es durch eine Iteration ja zwangsläufig hat), weiss aber sonst nicht wie ich ohne stundenlanges Ausprobieren(!) weiterkomme. Wenn ich das nämlich richtig sehe kann ich im Verlauf der Iteration der Funktion f(z) = (3+z)/(1-z) keine geometrische Folge erkennen.
Kennt ihr ein reguläres Verfahren wie man rekursive Funktionen in explizite Funktionen 'umwandeln' kann? Gibt es die überhaupt? Wenn nicht, kennt ihr weitere Tricks mit denen man bei bestimmten Anzeichen (von bestimmten Folgen oder bestimmten Mustern in der Zahlenfolge) das n-te Glied berechnen kann?

vielen vielen Dank für eure Antworten

(Ich habe in sieben Tagen eine Prüfung über das Thema, bin aber auch nachher noch interessiert an der Sache)

        
Bezug
Kompl. Folgen:IterationVonF(z): Aufgabe 11a
Status: (Antwort) fertig Status 
Datum: 17:08 Mi 26.05.2010
Autor: ullim

Hi,

rechne mal die ersten 4 Folgenglieder aus, dann wirst Du sehen, das [mm] z_4=z_1 [/mm] gilt.

D.h. ab da wiederholt sich die Folge und es gibt nur 3 verschiedene Folgenwerte.

[mm] z_1=2 [/mm]

[mm] z_2=-5 [/mm]

[mm] z_3=-\bruch{1}{3} [/mm]

Allgemein also für k=1 [mm] \ldots [/mm] n

[mm] z_{3k-2}=2 [/mm]

[mm] z_{3k-1}=-5 [/mm]

[mm] z_{3k}=\bruch{1}{3} [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]