matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKomplementärraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Komplementärraum
Komplementärraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplementärraum: Definition
Status: (Frage) beantwortet Status 
Datum: 23:32 Fr 28.01.2005
Autor: Reaper

Hallo!
1.Frage: Was ist ein Komplemenrärraum?
Kann mir irgendwie nichts graphisches darunter vorstellen.

2.Frage: Was ist konkret die lineare Mannigfaltigkeit?

Wäre schön wenn ihr es mir einfach so erklären würdet oder ein paar gute Lnks posten könntet. Danke!

        
Bezug
Komplementärraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Sa 29.01.2005
Autor: Christian

Hallo.

Zu 1.: Ein Komplement zu einem Unterraum U von V ist ein Unterraum W, mit dem [mm]U \oplus W = V[/mm] gilt, wobei [mm]\oplus[/mm] die direkte Summe der Unterräume U und W bezeichnet, das heißt, daß einerseits [mm] \{x + y | x \in U, y \in W \} =: U + W = V[/mm], und andererseits [mm]U \cap W = \{0 \}[/mm]  gilt.
Im [mm]\IR^2[/mm] sind lineare Unterräume beispielsweise Geraden durch den Ursprung.
Dann könnte man sich ein Komplement zu so einem Raum vorstellen als eine weitere Gerade, die zur ersten nicht parallel ist.
Im [mm]\IR^3[/mm] könnte man sich eine Ebene vorstellen, die den Ursprung enthält und eine Gerade, die die Ebene in 0 durchstößt.

Gruß,
Christian


Bezug
        
Bezug
Komplementärraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 So 30.01.2005
Autor: Stefan

Hallo Reaper!

Es gibt nicht die lineare Mannigfaltgkeit.

Mit "Linearen Mannigfaltigkeiten" bezeichnet man häufig einfach affine Unterräume, also im [mm] $\IR^n$ [/mm] etwa Mengen

$x+U$,

wobei $x [mm] \in \IR^n$ [/mm] und $U$ ein Untervektorraum des [mm] $\IR^n$ [/mm] ist.

Beispiel:

In [mm] $\IR^2$ [/mm] sind alle Punkte und alle affinen Geraden lineare Mannigfaltigkeiten (sowie natürlich der [mm] $\IR^2$ [/mm] selbst), im [mm] $\IR^3$ [/mm] alle Punkte, alle affinen Geraden und alle affinen Ebenen (also in beidem Fall auch solche, die nicht durch den Nullpunkt gehen) sowie der [mm] $\IR^3$ [/mm] selbst natürlich.

Liebe Grüße
Stefan

Bezug
                
Bezug
Komplementärraum: Frage
Status: (Frage) beantwortet Status 
Datum: 22:42 So 30.01.2005
Autor: Reaper

Was sind affine Unterräume?

Bezug
                        
Bezug
Komplementärraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Mo 31.01.2005
Autor: Christian

Affine Unterräume sind Teilmengen U eines linearen Unterraums V, für die jede affine Linearkombination von Elementen aus U wieder in U liegt, eine Linearkombination heißt affin, falls die Summe der Koeffizienten gleich 1 ist.
Also muß für affine Unterräume gelten:
[mm] \summe_{i=1}^{n}\lambda_i*v_i \in U[/mm] für alle [mm]v_i \in U[/mm] und [mm]\lambda_i \in K[/mm] mit [mm]\summe_{i=1}^{n} \lambda_i = 1[/mm].

Gruß,
Christian


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]