matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Komplexe Gleichung
Komplexe Gleichung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Gleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 08:32 Do 10.08.2006
Autor: Molch

Aufgabe
Für welche c [mm] \in \IR [/mm] besitzt die Gleichung

[mm] \bruch{3}{2}*w-\bruch{1}{2}*\overline{w}+i*|w|^{2}+1+i*c=0 [/mm]

Lösungen w [mm] \in \IC? [/mm]
In Abhängigkeit von c [mm] \in \IR [/mm] gebe man in diesen Fällen alle Lösungen an.

Hallo!

Ich habe ein Problem mit obiger Aufgabe.
Probiert habe ich, die Aufgabe mittels w:=x+i*y zu lösen, was nach quadr. Ergänzungen darauf führt, dass c [mm] \not=-((y+1)^{2}+(x-1)^{2}) [/mm] sein muss, damit der Imaginärteil [mm] \not= [/mm] 0 ist.

Doch wie ich jetzt von dieser Aussage auf die Lösungsmenge schließen kann, ist mir nicht ganz klar.

Für jegliche Hilfe, falls die Zeit es zulässt bitte bis heute Abend (wegen morgiger Klausur), bin ich sehr dankbar!

Gruß

        
Bezug
Komplexe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:03 Do 10.08.2006
Autor: banachella

Hallo!

Dein Ansatz, $w=x+iy$ zu setzen, ist zunächst mal gut. Aber dann scheint es etwas durcheinander zu gehen.

>  Probiert habe ich, die Aufgabe mittels w:=x+i*y zu lösen,
> was nach quadr. Ergänzungen darauf führt, dass c
> [mm]\not=-((y+1)^{2}+(x-1)^{2})[/mm] sein muss, damit der
> Imaginärteil [mm]\not=[/mm] 0 ist.

Wieso soll [mm] $\Im w\ne [/mm] 0$ sein? Auch eine reelle Zahl ist eine komplexe Zahl!

Setze in der Gleichung $w=x+iy,\ [mm] x,y\in\IR,$ [/mm] ein und multipliziere aus. So kommst du auf
[mm] $x+1+i(2y+x^2+y^2+c)=0$. [/mm]
Jetzt vergleiche Real- und Imaginärteil der rechten und linken Seite. Sie müssen ja jeweils gleich sein! Du wirst schnell eine einfach Gleichung für $x$ erhalten, setze diese in die zweite Gleichung ein. Jetzt musst du eigentlich nur noch beachten, dass [mm] $y\in\IR$ [/mm] gelten muss...

Kommst du jetzt weiter? Sonst frag doch einfach nochmal nach!

Gruß, banachella


Bezug
                
Bezug
Komplexe Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:14 Do 10.08.2006
Autor: Molch

Danke!

Da habe ich wohl mal wieder den Wald vor lauter Bäumen nicht gesehen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]