matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Ungleichung
Komplexe Ungleichung < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Do 17.03.2011
Autor: student124

Aufgabe
Wo liegen alle komplexen Zahlen z mit |z+2+i| [mm] \le [/mm] |z-4-2i|? Beschreiben Sie diese Menge als Gleichung und deuten Sie sie geometrisch.

Hallo Leute,

bin gerade bei folgender Aufgabe stecken geblieben. Mein Ansatz:

z = x +ib:

|x+ib+2+1| [mm] \le [/mm] |x+ib-4-2i|
= |(x+2) + i(b+1)| [mm] \le [/mm] |(x-4) + i(b-2)|      |²
= (x+2)² - (b+1)²  [mm] \le [/mm] (x-4)² - (b-2)²

Wär dass schon die Lösung? Meine Idee war, dass die Ungleichung jetzt zwei Kugelmittelpunkte beschreibt. Nur fällt es mir schwer das Ergebnis noch weiter zu deuten.

Vielen Dank!


        
Bezug
Komplexe Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Do 17.03.2011
Autor: Leopold_Gast

Du hast einen entscheidenden Fehler gemacht. Es gilt:

[mm]\left| a + \operatorname{i} b \right|^2 = a^2 + b^2[/mm]

Nicht zu verwechseln mit

[mm]\left( a + \operatorname{i} b \right)^2 = a^2 + 2 \operatorname{i} ab - b^2[/mm]

Übrigens empfehle ich bei solchen Aufgaben auf die Mittelstufengeometrie eines Gymnasiums zurückzugreifen. Dann braucht man nämlich nicht rechnen.

[mm]\left| z - a \right| = \text{Abstand von} \ z \ \text{und} \ a[/mm]

[mm]\left| z - a \right| = \left| z - b \right|[/mm]

Zugehörige Frage: Für welche Zahlen (Punkte der Gaußschen Zahlenebene) ist der Abstand vom Punkt [mm]a[/mm] derselbe wie vom Punkt [mm]b[/mm]?

Und wenn du die Frage für [mm]=[/mm] beantwortet hast, hast du sie auch gleich für [mm]\leq[/mm].

Bezug
                
Bezug
Komplexe Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:56 Do 17.03.2011
Autor: student124

Danke Leopold_Gast,

Also wäre es bei:

$ [mm] \left| z - a \right| [/mm] = [mm] \left| z - b \right| [/mm] $

doch ein Kreis mit dem Radius $ [mm] \left| z - a \right| [/mm] $ oder? Und bei $ [mm] \leq [/mm] $ wäre es der Kreisinhalt?
Vielen Dank!


Bezug
                        
Bezug
Komplexe Ungleichung: zwiegenäht
Status: (Antwort) fertig Status 
Datum: 22:22 Do 17.03.2011
Autor: Al-Chwarizmi


> Danke Leopold_Gast,
>  
> Also wäre es bei:
>  
> [mm]\left| z - a \right| = \left| z - b \right|[/mm]
>  
> doch ein Kreis mit dem Radius [mm]\left| z - a \right|[/mm] oder?

Nein. Die Menge der Punkte z der Ebene , welche von zwei
gegebenen Punkten a und b gleichen Abstand haben, ergibt
geometrisch betrachtet eine Gerade.

Der rechnerische Weg mit Real- und Imaginärteil ist aber
auch nicht schwierig und jedenfalls auch zu empfehlen:
doppelt genäht hält besser !

LG    Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]