matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahl in e^-Form
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Komplexe Zahl in e^-Form
Komplexe Zahl in e^-Form < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahl in e^-Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:15 Fr 23.02.2007
Autor: Marty1982

Aufgabe
a)Ermitteln Sie [mm] z_3 [/mm] und tragen Sie es in die GZE ein!
b)Stellen Sie [mm] z_3 [/mm] in der Eulerschen Form da!

Kein Taschenrechner erlaubt!

Gegeben:
[mm] z_1=3\*(\cos(240°)+i\*\sin(240°)) [/mm]
[mm] z_2=2\*(\cos(135°)+i\*\sin(135°)) [/mm]
Gesucht:
[mm] z_3=-3\*z_1 [/mm] + [mm] 2\*i\*z_2 [/mm]

Mein Lösungsweg:

[mm] z_3=-9\*(\cos(240°)+i\*\sin(240°))+i\*4\*(\cos(135°)+i\*\sin(135°)) [/mm]
[mm] z_3=-9\*(\cos(240°)+i\*\sin(240°))+*4\*(i\*\cos(135°)-1\*\sin(135°)) [/mm]
[mm] z_3=-9\*(-\bruch{1}{2}+i\*(-\bruch{1}{2}\wurzel{3}))+*4\*(i\*(-\bruch{1}{2}\wurzel{2})-\bruch{1}{2}\wurzel{2}) [/mm]
Nun erstmal Ordnung reinbringen:
[mm] z_3=-9\*(-\bruch{1}{2}+i\*(-\bruch{1}{2}\wurzel{3}))+*4\*(-\bruch{1}{2}\wurzel{2}-i\*(-\bruch{1}{2}\wurzel{2})) [/mm]
Ausmultipliziert:
[mm] z_3=(\bruch{9}{2}+\bruch{9}{2}\wurzel{3}i)+(-\bruch{4}{2}\wurzel{2}-\bruch{4}{2}\wurzel{2}i) [/mm]
[mm] z_3=\bruch{9-4\wurzel{2}}{2}+i\*(\bruch{9}{2}\wurzel{3}-\bruch{4}{2}\wurzel{3}) [/mm]

Soweit so gut, ich habe das Ergebnis mittels Taschenrechner prüfen können und es stimmt.

Nun die Frage darf ich in der trigonomischen Form anstatt z.B. cos(240) einfach [mm] -\bruch{1}{2} [/mm] schreiben um ein Ergebnis herauszubekommen? Es ist ja die Umwandlung in die kartesische Form und daher erlaubt oder sehe ich es falsch? :-)

Und wie stelle ich das Ergebnis ohne Taschenrechner in der GZE dar? Gibt es dort Vereinfachungen?

Ach ja, und wie wandle ich nun das Ergebnis von [mm] z_3 [/mm] in die Eulersche Form um?
[mm] z=r\*(\cos\alpha+i\*\sin\alpha)=r\*e^{i\alpha} [/mm] ist bekannt aber wie wird es hier angewendet?

Vielen Dank im Voraus!

Ich habe die Frage in keinem anderem Forum gestellt.

Dank und Gruß, Marty

        
Bezug
Komplexe Zahl in e^-Form: Tipp
Status: (Antwort) fertig Status 
Datum: 13:15 Fr 23.02.2007
Autor: matzematisch

Hallo,

im Grunde ganz einfach:
Du weisst: $cos$ ist der Realteil, $sin$, der Imaginärteil, also [mm] $cos(it)=Re(e^{it})$ [/mm] und [mm] $sin(it)=Im(e^{it})$ [/mm]
Das liest Du einfach aus der Darstellung von [mm] $z_3$. [/mm] Damit kannst Du [mm] $\alpha$ [/mm] berechnen und brauchst das dann nur noch einzusetzen.

> Ach ja, und wie wandle ich nun das Ergebnis von [mm]z_3[/mm] in die
> Eulersche Form um?
>  [mm]z=r\*(\cos\alpha+i\*\sin\alpha)=r\*e^{i\alpha}[/mm] ist bekannt
> aber wie wird es hier angewendet?

Grüße ....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]