matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Komplexe Zahlen
Komplexe Zahlen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Exponentialdarstellung
Status: (Frage) beantwortet Status 
Datum: 13:57 Mo 14.11.2005
Autor: piler

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi, wie hab ich eine komplexe Zahl in der eulerschen Darstellung zu interpretieren, die [mm] e^{i n}, [/mm] wobei n irgendeine Zahl ist, also z.B. [mm] e^{i4} [/mm] und kein Winkel.

Normalerweise ist die Darstellung ja [mm] e^{i \alpha} [/mm]

Wenn der Winkel aber eine Zahl ist, wie hab ich den zu interpretieren ?
Ist dass dan radiant ?

Die Frage gehört jetzt zu keiner speziellen aufgabe, aber wir hatten im Unterreicht oben immer nur z.B.   [mm] \bruch{\pi}{4} [/mm] oder sowas, aber auch ein oder zwei mal nur ne Zahl und ich hab das nie richtig verstanden.

danke

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Mo 14.11.2005
Autor: Hanno

Hallo Piler!

> Normalerweise ist die Darstellung ja $ [mm] e^{i \alpha} [/mm] $

Das ist richtig; [mm] $\alpha$ [/mm] ist dabei eine beliebige reelle Zahl, die den Winkel bzgl. der Realachse angibt; wichtig: im Bogenmaß! Zur Erinnerung: im Bogenmaß entsprechen 180° genau [mm] $\pi$, [/mm] alle übrigen Winkel lassen sich proportional umrechnen. Ist also [mm] $\alpha_r$ [/mm] ein Winkel im Bogenmaß, so ist [mm] $\alpha_{d} [/mm] = [mm] \alpha_r\cdot\frac{180°}{\pi}$ [/mm] der entsprechende Winkel im Gradmaß, entsprechend wandelt man den im Gradmaß gegebenen Winkel [mm] $\alpha_{d}$ [/mm] gemäß [mm] $\alpha_r=\alpha_d\cdot\frac{\pi}{180°}$ [/mm] ins Bogenmaß um. So entsprechen also $90°$ genau [mm] $\frac{\pi}{2}$, [/mm] $45°$ entsprechen [mm] $\frac{\pi}{4}$ [/mm] usw. Die $4$ in [mm] $e^{i\cdot 4}$ [/mm] entsprächen also [mm] $4\cdot\frac{180°}{\pi} \approx [/mm] 229°$.

Hilft dir das ein wenig?


Liebe Grüße,
Hanno

Bezug
                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Mo 14.11.2005
Autor: piler

ja.

vielen dank, hab mir sowas in der Art gedacht.

cya

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]