matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Komplexe Zahlen
Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Do 13.11.2003
Autor: AstridW

Hallo!
Wir machen jetzt in Analysis Komplexe Zahlen und mit den anderen Aufgaben bin ich auch so einigermaßen zurechtgekommen, aber hier blicke ich noch nicht so recht durch:
Sei M ein beliebiger Kreis oder eine beliebige Gerade in C. Zeigen Sie, dass man M durch M={z є C; azž + 2Re(bz)+c=0}mit geeignet gewählten a,c є R, b є C und bb(quer)>ac  beschreiben kann.
Astrid

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Do 13.11.2003
Autor: Stefan

Hallo Astrid,

na, dass versuche ich es mal diesmal besser zu machen. ;-)

Betrachten wir doch zunächst mal komplexe Kreise. Ein Kreis lässt sich beschreiben durch die Gleichung:

[mm] |z-m|^2 = r^2[/mm]

mit [mm]m \in \IC[/mm] und [mm]r>0[/mm]. Es gilt aber:

[mm] |z-m|^2 = (z-m)\cdot (\bar{z}-\bar{m}) = z\bar{z} -z\bar{m} - m\bar{z} + m \bar{m} = 1\cdot z\bar{z} + 2Re(-\bar{m}z) + |m|^2[/mm]

Dann lässt sich der Kreis beschreiben durch

[mm] 1\cdot z\bar{z} + 2Re(-\bar{m}z) + |m|^2 - r^2 = 0[/mm].

Setzen wir nun [mm]a=1[/mm], [mm]b=-\bar{m}[/mm] und [mm]c=|m|^2 - r^2[/mm], so erhalten wir die gewünschte Darstellung.

Die Bedingung [mm]b\bar{b}>ac[/mm] ist dann wegen

[mm](-\bar{m})\cdot (-m) - 1\cdot (|m|^2-r^2) = r^2 >0[/mm]

erfüllt.

Eine komplexe Gerade lässt sich (Normalenform im [mm]\IR^2[/mm]!) wie folgt beschreiben:

[mm]a_1 Re(z) + a_2 Im(z) + a_3 = 0[/mm]

mit [mm]a_1>0[/mm] oder [mm]a_2>0[/mm], also: [mm]a_1^2 + a_2^2 >0[/mm].

Dies bedeutet:

[mm]a_1 \cdot \frac{1}{2}\, (z+\bar{z}) + a_2\cdot \frac{1}{2i}\, (z-\bar{z}) + a_3 = 0[/mm],

also:

[mm] \frac{1}{2} (a_1 - ia_2)\, z + \frac{1}{2} (a_1 + ia_2)\bar{z} + a_3 = 0.[/mm]

Noch weiter umgeschrieben erhalten wir:

[mm]2Re(\frac{1}{2} (a_1 - ia_2)z) + a_3 = 0.[/mm]

Setzen wir nun [mm]a=0[/mm], [mm]b=\frac{1}{2}(a_1 - ia_2)[/mm] und [mm]c=a_3[/mm], so erhalten wir die gewünschte Darstellung.

Die Bedingung [mm]b\bar{b}>ac[/mm] ist dann wegen

[mm]\frac{1}{4}\cdot (a_1^2 + a_2^2) > 0\ (s.o.) [/mm]

erfüllt.

Alles klar? :-)

Liebe Grüße
Stefan


Bezug
                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 Do 13.11.2003
Autor: AstridW

Vielen, vielen Dank!!!!!!
Ich hatte das Problem, die Geraden und die Kreise durch gleiche Unbekannte ausdrücken zu wollen und bin dann natürlich auf kein Ergebnis gekommen! Ich hätte mir glaube ich mal lieber noch mal die Aufgabenstellung durchgelesen, bevor ich losrechne!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]