matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Mo 08.02.2010
Autor: jan_333

Aufgabe
Zeigen Sie, dass die Gleichung [mm] (z-a)^{n}=b [/mm] mit [mm] z,a,b\in\IC, n\in\IN [/mm] für komplexe Zahlen a,b mit [mm] b=r*e^{i\varphi} [/mm] von den Zahlen

[mm] z_{0}=a+\wurzel[n]{r}*e^{i\bruch{\varphi}{n}} [/mm]

[mm] z_{1}=a+\wurzel[n]{r}*e^{i(\bruch{\varphi}{n}+1*\bruch{2\pi}{n})} [/mm]

[mm] z_{2}=a+\wurzel[n]{r}*e^{i(\bruch{\varphi}{n}+2*\bruch{2\pi}{n})} [/mm]

      [mm] \vdots [/mm]

[mm] z_{n-2}=a+\wurzel[n]{r}*e^{i(\bruch{\varphi}{n}+(n-2)*\bruch{2\pi}{n})} [/mm]

[mm] z_{n-1}=a+\wurzel[n]{r}*e^{i(\bruch{\varphi}{n}+(n-1)*\bruch{2\pi}{n})} [/mm]

gelöst wird.
Begründen Sie, dass diese n Zahlen alle Lösungen der Gleichung sind.

Hallo,

ich muss diese Aufgabe hier machen, weiß aber nicht wie ich vorgehen soll oder was überhaupt gefordert ist. Ich konnte bisher bei komplexen Zahlen nur Sachen wie Real- und Imaginärteil, Polarkoordinaten und Exponentialform bestimmen. Aber mit dieser Aufgabe kann ich nix anfangen.

Bitte um Hilfe.

        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Mo 08.02.2010
Autor: pelzig

Du musst zeigen, dass die [mm] $z_i$ [/mm] für alle [mm] $0\le [/mm] i<n$ die Gleichung [mm] $(z_i-a)^n=b$ [/mm] erfüllen. Desweiteren sollst du zeigen, dass es keine weiteren Lösungen geben kann.

Gruß, Robert

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Mo 08.02.2010
Autor: jan_333

Danke für die Antwort!

Ich weiß aber nicht, wie ich da vorgehen muss.

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Mo 08.02.2010
Autor: felixf

Hallo!

> Danke für die Antwort!
>  
> Ich weiß aber nicht, wie ich da vorgehen muss.

Um zu zeigen, dass die [mm] $z_i$ [/mm] die Gleichung erfuellen? Einsetzen und ausrechnen! Du brauchst Rechenregeln fuer Wurzeln und die $e$-Funktion.

Leg doch mal los und schau wie weit du kommst. Wenn du nicht weiterkommst schreib hierher was du gemacht hast und wo genau du festhaengst.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]