matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen
Komplexe Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Di 18.10.2011
Autor: Mathematiklady

Aufgabe
Was ist an der folgenden Rechnung faul?

[mm] -1=i^{2}=\wurzel{-1}*\wurzel{-1}=\wurzel{(-1)*(-1)}=\wurzel{1}=1 [/mm]

Mein Professor hat das heute an die Tafel geschrieben und gesagt das ist ein Widerspruch, aber ich verstehe das nicht so ganz. Wo genau ist der Widerspruch, wie könnte ich das jetzt zum Beispiel am besten erklären???

Vielen lieben Dank schon mal


        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Di 18.10.2011
Autor: fred97

[mm] \wurzel{-1} [/mm] ist nicht eindeutig, denn

       [mm] $i^2=-1$ [/mm] und [mm] $(-i)^2=-1$ [/mm]


Im Komplexen hat jede Zahl [mm] \ne [/mm] 0 zwei Wurzeln.

FRED

Bezug
                
Bezug
Komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Di 18.10.2011
Autor: Mathematiklady

Hmmm wie könnte ich die Gleichung denn dann aufschreiben, damit sie richtig ist etwa so :

[mm] -1=i^2=\wurzel{-1}*\wurzel{1}=\wurzel{(-1)*(1)}=\wurzel{-1} [/mm]

Dankeeee

Bezug
                        
Bezug
Komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Di 18.10.2011
Autor: tobit09

Hallo Mathematiklady,

> Hmmm wie könnte ich die Gleichung denn dann aufschreiben,
> damit sie richtig ist etwa so :
>  
> [mm]-1=i^2=\wurzel{-1}*\wurzel{1}=\wurzel{(-1)*(1)}=\wurzel{-1}[/mm]

$i$ ist sicherlich keine Wurzel der Zahl 1, wie von dir mit dem zweiten Gleichheitszeichen irrtümlich angenommen.

Schon die Schreibweise [mm] $\wurzel{-1}$ [/mm] ist problematisch. Welche der beiden Wurzeln soll gemeint sein? Daher würde ich gar nicht erst versuchen, die faule Zeile des Professors zu retten.

[mm] ($\wurzel{a}$ [/mm] für eine nichtnegative reelle Zahl $a$ ist dagegen unproblematisch: Sie ist einfach definiert als die NICHTNEGATIVE reelle Zahl $b$ mit [mm] $b^2=a$.) [/mm]

Viele Grüße
Tobias

Bezug
                                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 18.10.2011
Autor: fred97


> Hallo Mathematiklady,
>  
> > Hmmm wie könnte ich die Gleichung denn dann aufschreiben,
> > damit sie richtig ist etwa so :
>  >  
> >
> [mm]-1=i^2=\wurzel{-1}*\wurzel{1}=\wurzel{(-1)*(1)}=\wurzel{-1}[/mm]
>  [mm]i[/mm] ist sicherlich keine Wurzel der Zahl 1, wie von dir mit
> dem zweiten Gleichheitszeichen irrtümlich angenommen.
>  
> Schon die Schreibweise [mm]\wurzel{-1}[/mm] ist problematisch.
> Welche der beiden Wurzeln soll gemeint sein? Daher würde
> ich gar nicht erst versuchen, die faule Zeile des
> Professors zu retten.
>  
> ([mm]\wurzel{a}[/mm] für eine nichtnegative reelle Zahl [mm]a[/mm] ist
> dagegen unproblematisch: Sie ist einfach definiert als die
> NICHTNEGATIVE reelle Zahl [mm]b[/mm] mit [mm]b^2=a[/mm].)


Vorsicht !


Im Komplexen ist das aber nicht mehr richtig ! Wegen [mm] (-b)^2=a [/mm]  ist im Komplexen auch -b eine Wurzel aus a.

FRED

>  
> Viele Grüße
>  Tobias


Bezug
                                        
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Di 18.10.2011
Autor: tobit09

Hallo Fred,

> Im Komplexen ist das aber nicht mehr richtig ! Wegen
> [mm](-b)^2=a[/mm]  ist im Komplexen auch -b eine Wurzel aus a.

Ich folge folgenden beiden Definitionen:

EINE Wurzel einer komplexen Zahl $a$ ist ein Element [mm] $b\in\IC$ [/mm] mit [mm] $b^2=a$. [/mm]

Dafür würde ich von der Schreibweise [mm] $\wurzel{a}$ [/mm] abraten, da sie eine Eindeutigkeit suggeriert.

Das Symbol [mm] $\wurzel{a}$ [/mm] für eine nichtnegative reelle Zahl $a$ wird dagegen im z.B. in Forster, Analysis I völlig eindeutig auf folgende Weise definiert: [mm] $\wurzel [/mm] a$ ist die eindeutig bestimmte NICHTNEGATIVE reelle Zahl $b$ mit [mm] $b^2=a$. [/mm]

Im Sinne dieser Definition steht das Symbol [mm] $\wurzel{a}$ [/mm] tatsächlich für eine eindeutig bestimmte Zahl; unbenommen der Tatsache, dass $a$ im Falle [mm] $a\neq0$ [/mm] zwei Wurzeln im Sinne obiger Definition besitzt.

Viele Grüße
Tobias

Bezug
                                                
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Di 18.10.2011
Autor: fred97

Danke für die Belehrungen. In meinen Vorlesungen mach ich es immer so:



1. Sind wir in [mm] \IR, [/mm] so ziehen wir nur Wurzen aus Zahlen [mm] \ge [/mm] 0 und das Resultat ist [mm] \ge [/mm] 0.

2. Sind wir in [mm] \IC, [/mm] so hat jede komplexe Zahl [mm] \ne [/mm] 0 zwei Wurzeln.

Nicht nur ich mache das so.

FRED

Bezug
                                                        
Bezug
Komplexe Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:02 Di 18.10.2011
Autor: tobit09

Hallo nochmal,

nun ist mir dein ursprünglicher Einwand verständlich.

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]