matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Komplexe Zahlen
Komplexe Zahlen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:59 Di 06.09.2005
Autor: mr_di

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,

leider habe ich da ein Problem mit zwei Aufgaben:

Es sind folgende komplexe Zahlen vorgegeben. Man soll jetzt den Betrag und die konjugiert-komplexe Zahl berechnen. Wie man die konjugiert-komplexe Zahl normal angiebt ist mir klar, aber wie muss ich das machen, wenn ich erst eine Division habe?
Meine Aufgaben sehen folgendermaßen aus:

[mm]z_2 := 5e^{-2 \cdot j}[/mm]
[mm]z_3 := {1+j \over e^{- \pi \cdot j}}[/mm]

jetzt frage ich mich, wie ich genau vorgehe. Bei der ersten Aufgabe würde ich selbst sagen, daß der Betrag ja schon ausgerechnet ist, denn der ist doch 5, oder? und die konjugiert-komplexe Zahl dazu ist:

[mm]\overline {z_2} := 5e^{2 \cdot j}[/mm]

nur bei der anderen Aufgabe hake ich fest. Muß ich jetzt erst alles komplett umformen? Weil die Darstellungen sind ja unterschiedlich. Wie mache ich das dann am schlauesten? Oder kann ich für die konjugiert-komplexe Zahl auch einfach durch die einzelnen Zahlen berechnen? Dann würde mir nur der Betrag fehlen.

Wenn das geht, würde ich die konjugiert-komplexe Zahl ja so versuchen:
[mm]\overline {z_3} := {1-j \over e^{\pi \cdot j}}[/mm]

Eine zusätzliche Frage hätte ich noch, die wahrscheinlich lächerlich ist, aber irgendwie fehlt mir wohl der Weitblick. Warum ist [mm]3 \cdot (cos {\pi \over 4} + j \cdot sin {\pi \over 4}) = 3 \cdot ({1 \over \sqrt{2}} + j \cdot {1 \over \sqrt{2}})[/mm]? Ich verstehe den Zusammenhang nicht so ganz.

Ich hoffe, daß mir jemand mal meine Aufgabe als Beispiel vorrechnen kann, denn dann wäre ich schonmal weiter. Vor allem ist wichtig, daß ich versuchen muß ohne Taschenrechner zu rechnen.

Danke.

        
Bezug
Komplexe Zahlen: Ansätze
Status: (Antwort) fertig Status 
Datum: 00:11 Mi 07.09.2005
Autor: Loddar

Hallo mr_di!


> [mm]z_2 := 5e^{-2 \cdot j}[/mm]
> [mm]z_3 := {1+j \over e^{- \pi \cdot j}}[/mm]
>  
> jetzt frage ich mich, wie ich genau vorgehe. Bei der ersten
> Aufgabe würde ich selbst sagen, daß der Betrag ja schon
> ausgerechnet ist, denn der ist doch 5, oder? und die
> konjugiert-komplexe Zahl dazu ist:
>  
> [mm]\overline {z_2} := 5e^{2 \cdot j}[/mm]

[daumenhoch]

  

> nur bei der anderen Aufgabe hake ich fest. Muß ich jetzt
> erst alles komplett umformen?

Schreibe doch mal den Nenner um gemäß:    [mm] $e^{\varphi*j} [/mm] \ = \ [mm] \cos(\varphi) [/mm] + [mm] j*\sin(\varphi)$ [/mm]

Damit ergibt sich doch:   [mm] $e^{-\pi*j} [/mm] \ = \ [mm] \cos(-\pi) [/mm] + [mm] j*\sin(-\pi) [/mm] \ = \ -1 + j*0 \ = \ -1$

Damit dürfte dann die weitere Berechnung für [mm] $z_3$ [/mm] ja kein größeres Problem mehr sein, oder?


> Warum ist [mm]3 \cdot (cos {\pi \over 4} + j \cdot sin {\pi \over 4}) = 3 \cdot ({1 \over \sqrt{2}} + j \cdot {1 \over \sqrt{2}})[/mm]?
> Ich verstehe den Zusammenhang nicht so ganz.

Hier wurden schlicht und ergreifend die Funktionswerte für [mm] $\cos$ [/mm] bzw. [mm] $\sin$ [/mm] ausgerechnet.

Es gilt ja: [mm] $\cos\left(\bruch{\pi}{4}\right) [/mm] \ = \ [mm] \cos(45°) [/mm] \ = \ [mm] \sin\left(\bruch{\pi}{4}\right) [/mm] \ = \ [mm] \sin(45°) [/mm] \ = \ [mm] \bruch{1}{2}\wurzel{2} [/mm] \ = \ [mm] \bruch{1}{\wurzel{2}}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]