matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisKomplexe Zahlen, Mal in Polar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - Komplexe Zahlen, Mal in Polar
Komplexe Zahlen, Mal in Polar < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen, Mal in Polar: Allgemeine Herleitung
Status: (Frage) beantwortet Status 
Datum: 12:18 Sa 21.10.2006
Autor: Phoney

Seid gegrüßt.

Um zu zeigen, wie man mit komplexen Zahlen in Polarkoordinaten multipliziert, nahmen wir folgende Formel

[mm] $z_1*z_2=\rho_1*(cos\Phi_1*i sin\Phi_1)\rho_2(cos\Phi_2*i sin\Phi_2)$ [/mm]

Dann kamen wir auhc völlig logisch auf


[mm] $\rho_1*\rho_2(cos\Phi_1*cos\Phi_2-sin\Phi_1*sin\hi_2+i(cos\Phi_1*sin\Phi_2+sin\Phi_1*cos\Phi_2))$ [/mm]

Dat habn wir jetzt zusammengefasst zu

[mm] $\rho_1*\rho_2(cos(\Phi_1+\Phi_2)+i(sin\Phi_1+\Phi_2))$ [/mm]

Das finde ich so auch in jeder Formelsammlung. WAs ist da in dem Schrit nu passiert????? Kann das Additionstheorem nicht heraus finden.


Aber das haben wir wieder vereinfacht zu [mm] $$\rho_1*\rho_2*cos(\Phi_1+\Phi_2)+i$ [/mm]

Das ist fehlerhaft, oder?

Vielen vielen vielen dank vorab für die antworten

Grüße
Johann



        
Bezug
Komplexe Zahlen, Mal in Polar: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Sa 21.10.2006
Autor: Event_Horizon

Ich verstehe nicht, was du damit meinst, daß du das Additionstheorem nicht herausfinden kannst.


Eigentlich ist das exakt 1:1 das, was da steht, nämlich [mm] $\sin(\phi_1+\phi_2)=\sin\phi_1\cos\phi_2+\cos\phi_1\sin\phi_2$. [/mm] Für den cos gilt fast das gleiche.


Deine letzte Umformung ist natürlich falsch. Meintest du evtl eher [mm] $\rho_1\rho_2e^{i(\phi_1+\phi_2)}$ [/mm] ?

Bezug
                
Bezug
Komplexe Zahlen, Mal in Polar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:34 Sa 21.10.2006
Autor: Phoney


> Ich verstehe nicht, was du damit meinst, daß du das
> Additionstheorem nicht herausfinden kannst.
> Eigentlich ist das exakt 1:1 das, was da steht, nämlich
> [mm]\sin(\phi_1+\phi_2)=\sin\phi_1\cos\phi_2+\cos\phi_1\sin\phi_2[/mm].
> Für den cos gilt fast das gleiche.

D.h. das ich das Additionstheorem in der Formelsammlung nicht gefunden habe.

> Deine letzte Umformung ist natürlich falsch. Meintest du
> evtl eher [mm]\rho_1\rho_2e^{i(\phi_1+\phi_2)}[/mm] ?

Nein, eigentlich nicht.....

Auf jeden Fall hat mir das geholfen. Danke dafür, dass du dein Wissen für mich bereitgestellt hast.

Schönen Gruß - Phoney


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]