matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenKomplexe Zahlen Menge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Komplexe Zahlen Menge
Komplexe Zahlen Menge < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexe Zahlen Menge: Idee
Status: (Frage) beantwortet Status 
Datum: 18:57 So 10.01.2021
Autor: YorkNw

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo, wir haben folgende Frage gestellt bekommen und ich stehe momentan ziemlich auf dem Schlau bzw. weiß nicht wie und was ich rechnen soll...

Skizzieren Sie die folgenden Teilmengen von C in der Gauß’schen Zahlenebene:

a) M1 := { z ∈ C | 􏰅􏰅Im [mm] (􏰁z^2) [/mm] 􏰂≤ 2 } 􏰅
b) M2 := { z ∈ C \ {0} | 􏰅Re (1:z) =1 }
􏰊􏰅􏰋
Hinweis: Ein Kreis um den Mittelpunkt (a, b) mit Radius r kann in der Ebene des R2 mit der Gleichung [mm] (x−a)^2 [/mm] + [mm] (y−b)^2 [/mm] = [mm] r^2 [/mm] beschrieben werden.

Danke im Voraus!!! :)

        
Bezug
Komplexe Zahlen Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 So 10.01.2021
Autor: statler

Auch hallo, welcome to the club!

In Koordinatenform ist ja z = a + bi, damit kann man [mm] z^2 [/mm] (1:z) ausrechnen und [mm] Im(z^2) [/mm] (Re(1:z)) bestimmen. Die Ungleichung (Gleichung) gibt dann eine Bedingung an a und b, und das kann man in der Gaußschen Zahlenebene visualisieren. Soviel zur allgemeinen Herangehensweise.

Was deine komischen Symbole im Text bedeuten, erschließt sich mir nicht.

Gruß Dieter

Bezug
        
Bezug
Komplexe Zahlen Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Mo 11.01.2021
Autor: fred97


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo, wir haben folgende Frage gestellt bekommen und ich
> stehe momentan ziemlich auf dem Schlau bzw. weiß nicht wie
> und was ich rechnen soll...
>  
> Skizzieren Sie die folgenden Teilmengen von C in der
> Gauß’schen Zahlenebene:
>  
> a) M1 := [mm]{z∈C|􏰅􏰅Im(􏰁z^2)􏰂≤2}[/mm] 􏰅


Das lautet wohl so:

[mm] M_1=\{z \in \IC: Im(z^2) \le 2\}.$ [/mm]


>  b) M2 := [mm]{z∈C\{0}|􏰅Re (1:z) =1}[/mm]

Und das so:

[mm] M_2=\{z \in \IC: Re(1/z) =1\}.$ [/mm]


>  􏰊􏰅􏰋
>  Hinweis: Ein Kreis um den Mittelpunkt (a, b) mit Radius r
> kann in der Ebene des R2 mit der Gleichung [mm](x−a)^2 +(y−b)^2 =r^2[/mm]

Auch da ist etwas schief gegangen: korrekt: [mm] (x-a)^2 +(y-b)^2 =r^2 [/mm]


> beschrieben werden.
>  
> Danke im Voraus!!! :)


Im Folgenden sei stets $z=x+iy$ mit $x,y [mm] \in \IR.$ [/mm]

Zu [mm] M_1: [/mm] Es ist [mm] z^2=x^2-y^2+2ixy, [/mm] also [mm] Im(z^2) [/mm] =2xy.

Damit:

    [mm] $Im(z^2) \le [/mm] 2 [mm] \gdw [/mm] xy [mm] \le [/mm] 1.$

Kommst Du damit weiter ?

Zu [mm] M_2: [/mm]  Es ist $1/z= [mm] \frac{\overline{z}}{z \overline{z}}= \frac{x-iy}{x^2+y^2}$, [/mm] also

    $Re(1/z)= [mm] \frac{x}{x^2+y^2} [/mm] =1 [mm] \gdw x^2+y^2-x=0.$ [/mm]

Jetzt Du.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]