matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisKomplexes Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Komplexes Integral
Komplexes Integral < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexes Integral: Korrektur
Status: (Frage) beantwortet Status 
Datum: 08:47 So 13.05.2012
Autor: chesn

Aufgabe
Bestimmen Sie das Integral $ [mm] \integral_\gamma [/mm] f(z) \ dz $ für die Funktion

f: [mm] \IC\to\IC, z\to |z|*\overline{z} [/mm]

und folgende Wege [mm] \gamma [/mm] mit Anfangspunkt -1 und Endpunkt 1:

(a) geradlinige Verbindung
(b) obere Halbkreislinie
(c) untere Halbkreislinie

Hallo! Mit Bitte um Korrektur:

Zunächst muss ich meine Wege [mm] \gamma [/mm] parametrisieren:

(a) [mm] \gamma_1(t)=-1+2t [/mm] mit $ [mm] 0\le t\le [/mm] 1 $ und berechne damit das Integral:

$ [mm] \integral_0^1{f(\gamma(t))*\gamma'(t) \ dt}=\integral_0^1{|-1+2t|*(-1+2t)*2} [/mm] \ \ [mm] \* [/mm] $

Bei der Berechnung komme ich hier auf [mm] \*=0 [/mm] , kann das sein? Den Betrag habe ich natürlich berücksichtigt und das Ganze in zwei Integrale von 0 bis [mm] \bruch{1}{2} [/mm] und von [mm] \bruch{1}{2} [/mm] bis 1 zerlegt.

So richtig?

(b) Genauso mit $ [mm] \gamma_2(t)=cos(t)+i*sin(t) [/mm] \ \ [mm] 0\le t\le \pi [/mm] $

und (c) mit $ [mm] \gamma_3(t)=cos(t)-i*sin(t) [/mm] \ \ [mm] 0\le t\le \pi [/mm] $

Passt das alles so oder gibt es noch was besonderes zu beachten?

Danke und lieben Gruß,
chesn

        
Bezug
Komplexes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 09:22 So 13.05.2012
Autor: fred97


> Bestimmen Sie das Integral [mm]\integral_\gamma f(z) \ dz[/mm] für
> die Funktion
>  
> f: [mm]\IC\to\IC, z\to |z|*\overline{z}[/mm]
>  
> und folgende Wege [mm]\gamma[/mm] mit Anfangspunkt -1 und Endpunkt
> 1:
>  
> (a) geradlinige Verbindung
>  (b) obere Halbkreislinie
>  (c) untere Halbkreislinie
>  Hallo! Mit Bitte um Korrektur:
>  
> Zunächst muss ich meine Wege [mm]\gamma[/mm] parametrisieren:
>  
> (a) [mm]\gamma_1(t)=-1+2t[/mm] mit [mm]0\le t\le 1[/mm] und berechne damit
> das Integral:
>  
> [mm]\integral_0^1{f(\gamma(t))*\gamma'(t) \ dt}=\integral_0^1{|-1+2t|*(-1+2t)*2} \ \ \*[/mm]
>  
> Bei der Berechnung komme ich hier auf [mm]\*=0[/mm] , kann das sein?
> Den Betrag habe ich natürlich berücksichtigt und das
> Ganze in zwei Integrale von 0 bis [mm]\bruch{1}{2}[/mm] und von
> [mm]\bruch{1}{2}[/mm] bis 1 zerlegt.
>  
> So richtig?
>  
> (b) Genauso mit [mm]\gamma_2(t)=cos(t)+i*sin(t) \ \ 0\le t\le \pi[/mm]
>  
> und (c) mit [mm]\gamma_3(t)=cos(t)-i*sin(t) \ \ 0\le t\le \pi[/mm]
>  
> Passt das alles so



Ja


FRED

> oder gibt es noch was besonderes zu
> beachten?
>  
> Danke und lieben Gruß,
>  chesn


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]