matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieKomplexes Integral lösen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Komplexes Integral lösen
Komplexes Integral lösen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexes Integral lösen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:14 Mi 13.06.2012
Autor: nhard

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Berechne das reelle Integral
$\int_{-\infty}^{0} \bruch{x^\mu}{\left(x-ic_1)^2(x-ic_2)^2}$
mit Hilfe eines geschlossenen Weges im Komplexen und unter der Verwendung des Residuensatzes. $-1<\mu<3,\quad c_1,c_2\in\mathbb{R}$


Hallo liebes Forum.

Irgendwie verstehe warum das Integral nicht 0 ist (habs mal zur Probe mit Mathematika gerechnet).
Für die Integration im Komplexen würde ich einfach einen Halbkreis dazu nehmen (siehe. Skizze) und dann wie gewohnt zeigen, dass der Beitrag dieses Halbkreises verschwindet. Aber dann hab ich doch ein geschlossenes Integral in einem holomorphen Gebiet der Funktion, das somit dann doch 0 sein müsste, die Pole liegen ja beide auf der Imaginären Achse (je nach dem welches Vorzeichen die Konstanten haben oberhalb oder unterhalb der Reellen achse).

Aber irgendwo scheine ich ja einen Denkfehler zu machen, weiß nur leider nicht wo..

[Dateianhang nicht öffentlich]


Vielen Dank schonmal :)


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Komplexes Integral lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Do 14.06.2012
Autor: rainerS

Hallo!

> Berechne das reelle Integral
> [mm]\int_{-\infty}^{0} \bruch{x^\mu}{\left(x-ic_1)^2(x-ic_2)^2}[/mm]
>  
> mit Hilfe eines geschlossenen Weges im Komplexen und unter
> der Verwendung des Residuensatzes. [mm]-1<\mu<3,\quad c_1,c_2\in\mathbb{R}[/mm]
>  
> Hallo liebes Forum.
>  
> Irgendwie verstehe warum das Integral nicht 0 ist (habs mal
> zur Probe mit Mathematika gerechnet).
>  Für die Integration im Komplexen würde ich einfach einen
> Halbkreis dazu nehmen (siehe. Skizze) und dann wie gewohnt
> zeigen, dass der Beitrag dieses Halbkreises verschwindet.
> Aber dann hab ich doch ein geschlossenes Integral in einem
> holomorphen Gebiet der Funktion, das somit dann doch 0 sein
> müsste, die Pole liegen ja beide auf der Imaginären Achse
> (je nach dem welches Vorzeichen die Konstanten haben
> oberhalb oder unterhalb der Reellen achse).
>
> Aber irgendwo scheine ich ja einen Denkfehler zu machen,
> weiß nur leider nicht wo..
>  
> [Dateianhang nicht öffentlich]

Die Funktion [mm] $x^\mu [/mm] = [mm] \exp(\mu \ln [/mm] x)$ ist für nichtganzzahliges [mm] $\mu$ [/mm] im Punkt 0 nicht holomorph, und damit kannst du für den Weg in deiner Zeichung des Cauchyschen Integralsatz nicht anwenden; mit der üblichen KOnvention für den Logartihmus darfst du die negative reelle Achse nicht kreuzen.

Du müsstest also zunächst ein kleines [mm] $\varepsilon$ [/mm] als obere Grenze annehmen und den geraden Teil des Weges ein wenig oberhalb der negativen reellen Achse führen.

Ich bin mir außerdem nicht sicher, dass das Kurvenintegral über deinen Halbkreis von Radius R für [mm] $R\to\infty$ [/mm] verschwindet. Denn das funktioniert nur, wenn der Nenner für große R wie [mm] $R^4$ [/mm] anwächst, was mir inder Nähe des Ursprungs nicht der Fall zu sein scheint.

Mir fällt aber auch im Moment keine geschickte Wahl für den Integrationsweg ein - ich setze die Frage mal auf teilweise beantwortet

  Viele Grüße,
    Rainer

Bezug
        
Bezug
Komplexes Integral lösen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Fr 15.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]