matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisKomplexifizierung- Norm finden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Komplexifizierung- Norm finden
Komplexifizierung- Norm finden < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexifizierung- Norm finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Mo 29.08.2011
Autor: marc1601

[mm] \textbf{Definition:} [/mm] Sei $E$ ein reeller Banachraum und [mm] $E_c [/mm] := E + iE$. Dann heißt [mm] $(E_c, \parallel\cdot \parallel)$ [/mm] eine [mm] \textit{Komplexifizierung} [/mm] von $E$, falls

1. [mm] $(E_c, \parallel\cdot \parallel)$ [/mm] ist ein komplexer Banachraum.

2. Es gilt [mm] $\parallel\xi [/mm] + i 0 [mm] \parallel= \parallel\xi \parallel$ [/mm] für alle [mm] $\xi \in [/mm] E$, d.h. die Einschränkung von [mm] $\parallel\cdot \parallel$ [/mm] auf $E$ stimmt mit der ursprünglichen Norm von $E$ überein.

3. Für alle [mm] $\xi, \eta \in [/mm] E$ gilt [mm] $\parallel\xi [/mm] + i [mm] \eta \parallel= \parallel\xi [/mm] - i [mm] \eta \parallel$. [/mm]

Hallo zusammen, ich möchte zeigen, dass es für jeden reellen Banachraum eine solche Komplexifizierung gibt. Eine - wie ich dachte - wunderbare Idee ist es dazu  [mm] $\parallel\xi [/mm] + [mm] i\eta \parallel:= \sup\{ \sqrt{f(\xi)^2 + f(\eta)^2} \ : \ f \in E', \ \parallel f \parallel_{op} \leq 1 \}$ [/mm]  zu definieren. Dabei bezeichnet $E'$ den topologischen Dualraum von $E$ und [mm] $\parallel \cdot \parallel_{op}$ [/mm] die Operatornorm. Bis auf die Dreiecksungleichung kann ich auch alle Normeigenschaften zeigen, aber immer wenn ich mich daran versuche, stoße ich auf Granit. Wenn ich [mm] $\parallel (\xi [/mm] + [mm] \alpha) [/mm] + [mm] i(\eta [/mm] + [mm] \beta) \parallel$ [/mm] umschreiben will (und den sup-Ausdruck erstmal weglasse), bekomme ich wegen der Quadrate immer einen Ausdruck der Form [mm] $f(\xi)^2 [/mm] + [mm] 2f(\xi)f(\alpha) [/mm] + [mm] f(\alpha)^2$. [/mm] Kann ich den nicht-quadratischen Term irgendwie wegbekommen? Mir fällt dazu leider keine Lösung ein, oder sollte ich einen ganz anderen Ansatz wählen? Vielen Dank für eure Hilfe!

Ich habe diese Frage in keinem anderen Forum und auf keiner anderen Internetseite gestellt.

        
Bezug
Komplexifizierung- Norm finden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:47 Mo 29.08.2011
Autor: felixf

Moin!

> [mm]\textbf{Definition:}[/mm] Sei [mm]E[/mm] ein reeller Banachraum und [mm]E_c := E + iE[/mm].
> Dann heißt [mm](E_c, \parallel\cdot \parallel)[/mm] eine
> [mm]\textit{Komplexifizierung}[/mm] von [mm]E[/mm], falls
>  
> 1. [mm](E_c, \parallel\cdot \parallel)[/mm] ist ein komplexer
> Banachraum.
>  
> 2. Es gilt [mm]\parallel\xi + i 0 \parallel= \parallel\xi \parallel[/mm]
> für alle [mm]\xi \in E[/mm], d.h. die Einschränkung von
> [mm]\parallel\cdot \parallel[/mm] auf [mm]E[/mm] stimmt mit der
> ursprünglichen Norm von [mm]E[/mm] überein.
>  
> 3. Für alle [mm]\xi, \eta \in E[/mm] gilt [mm]\parallel\xi + i \eta \parallel= \parallel\xi - i \eta \parallel[/mm].
>  
> Hallo zusammen, ich möchte zeigen, dass es für jeden
> reellen Banachraum eine solche Komplexifizierung gibt. Eine
> - wie ich dachte - wunderbare Idee ist es dazu  
> [mm]\parallel\xi + i\eta \parallel:= \sup\{ \sqrt{f(\xi)^2 + f(\eta)^2} \ : \ f \in E', \ \parallel f \parallel_{op} \leq 1 \}[/mm]
>  zu definieren. Dabei bezeichnet [mm]E'[/mm] den topologischen
> Dualraum von [mm]E[/mm] und [mm]\parallel \cdot \parallel_{op}[/mm] die
> Operatornorm. Bis auf die Dreiecksungleichung kann ich auch
> alle Normeigenschaften zeigen, aber immer wenn ich mich
> daran versuche, stoße ich auf Granit. Wenn ich [mm]\parallel (\xi + \alpha) + i(\eta + \beta) \parallel[/mm]
> umschreiben will (und den sup-Ausdruck erstmal weglasse),
> bekomme ich wegen der Quadrate immer einen Ausdruck der
> Form [mm]f(\xi)^2 + 2f(\xi)f(\alpha) + f(\alpha)^2[/mm]. Kann ich
> den nicht-quadratischen Term irgendwie wegbekommen? Mir
> fällt dazu leider keine Lösung ein, oder sollte ich einen
> ganz anderen Ansatz wählen? Vielen Dank für eure Hilfe!

Der Ansatz ist schon gut. Versuch es nur etwas weniger technisch zu machen ;-)

Ist $f [mm] \in [/mm] E'$, so ist $h(x + i y) := f(x) + i f(y)$ in [mm] $E_c'$. [/mm] Weiterhin ist [mm] $\sqrt{f(\xi)^2 + f(\eta)^2} [/mm] = [mm] |h(\xi [/mm] + i [mm] \eta)|$, [/mm] wobei [mm] $|\bullet|$ [/mm] der normale Betrag auf [mm] $\IC$ [/mm] ist.

Jetzt ist $h$ linear und fuer [mm] $|\bullet|$ [/mm] gilt die Dreiecksungleichung - das liefert dir sofort die Dreiecksungleichung ohne das Supremum.

Und mit Supremum ist es auch nicht viel schwerer....

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]