matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKomplexitätsklassen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Komplexitätsklassen
Komplexitätsklassen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Komplexitätsklassen: Richtigkeit von K-Klassen zeig
Status: (Frage) beantwortet Status 
Datum: 14:26 Mo 19.05.2008
Autor: Marry2605

Aufgabe
Zeigen Sie die Richtigkeit folgender Aussagen :
n³ + [mm] 1000^{6}*n² [/mm] = O(n³)

Hallo :)

Wir habn das heute in der VL gemacht und ich versteh nicht so ganz auf was es dabei ankommt.
Der Weg der Berechnung läuft immer so ab :
n³ + [mm] 1000^{6} [/mm] n² = O(n³)

[mm] \bruch{n³ + 1000^{6}*n²}{n³} [/mm]
n³ rausziehn:
[mm] \bruch{n³(1+\bruch{1000^{6}}{n}}{n³} [/mm]
Dann kann ich kürzen und komme auf :
[mm] 1+\bruch{1000^{6}}{n} [/mm]

Worauf kommt es jetzt hier an? Wenn n gegen unendlich geht geht das ganze ja dann gegen 1. Doch was sagt mir das für mein Ergebnis?
Also wenn ein Grenzwert rauskommt -> Richtige Aussage? Nullfolge -> Falsche Aussage.

Lg Marry





        
Bezug
Komplexitätsklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Mo 19.05.2008
Autor: fred97

Was bedeutet denn [mm] O(n^3) [/mm] ?
Es bedeutet:
Der Ausdruck (linke Seite) dividiert durch [mm] n^3 [/mm] bleibt für n gegen unendlich beschränkt


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]