matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperKompositionsreihen endlicher G
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Kompositionsreihen endlicher G
Kompositionsreihen endlicher G < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kompositionsreihen endlicher G: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:37 Fr 30.10.2015
Autor: sissile

Aufgabe
Gibt es ein Gegenbeispiel für zwei endliche Gruppen mit gleich viel Elementen die eine Kompositionsreihe haben die nicht  äquivalent sind?
z.B [mm] (\mathbb{Z}_4, [/mm] +) und [mm] (\mathbb{Z}_2 \times \mathbb{Z}_2,+) [/mm] haben äquivalene Kompositionsreihen( Anzahl  der Terme stimmt überein und Faktorgruppen zueinander isomorph)


Hallo,
Nach Satz in der Vorlesung hat eine endliche Gruppe immer eine Kompositionsreihe. Daran scheitert es also nicht.
Jordan-Hölder sagt ja nur etwas über die Kompositionsreihen einer(derselben) Gruppe etwas aus. Aber über zwei Gruppen der gleichen Anzahl von Elementen habe ich nichts gefunden. ALso muss es falsch sein oder?
Oder gilt das nur für abelsche Gruppen?

LG,
sissi

        
Bezug
Kompositionsreihen endlicher G: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Fr 30.10.2015
Autor: Schadowmaster

Versuch mal die alternierende Gruppe [mm] $A_5$. [/mm] Wenn du die Reihe dieser Gruppe hast such dir eine andere, die eine deutlich andere Reihe hat (das ist recht leicht^^).

Bezug
                
Bezug
Kompositionsreihen endlicher G: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:06 Fr 30.10.2015
Autor: sissile

Hallo Shadowmaster,
Vielen Dank!
[mm] A_5 [/mm] ist eine einfache Gruppe also bestehst seine Kompositionsreihe aus [mm] A_5 [/mm] und dem neutralen Element.
Als zweite Gruppe meinst du sicherlich [mm] \mathbb{Z}_{120} [/mm] und dafür 120=2*2*2*3*5 hätte  ich die Kompositionsreihe:
[mm] \mathbb{Z}_{120} \trianglerighteq 2\mathbb{Z}/120\mathbb{Z} \trianglerighteq 2*2\mathbb{Z}/120\mathbb{Z} \trianglerighteq 2*2*3\mathbb{Z}/120\mathbb{Z} \trianglerighteq \{0\} [/mm]

Hast du auch für zwei abelsche Gruppen mit gleicher Gruppenordnung ein Gegenbeispiel?
LG,
sissi

Bezug
                        
Bezug
Kompositionsreihen endlicher G: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 Mo 02.11.2015
Autor: Schadowmaster

Ich glaube für Abelsche wird das nichts:
Die Faktorgruppen sind im einfache, Abelsche Gruppen (wenn die Ausgangsgruppe Abelsch ist). Die einzigen einfachen, Abelschen Gruppen sind [mm] $C_p$ [/mm] für $p$ Primzahl. Daher vermute ich für Abelsche Gruppen ist die Reihe (bis auf Reihenfolge) bereits durch die Primfaktorzerlegung der Gruppenordnung eindeutig bestimmt und daher wird man hier keine Gegenbeispiele bekommen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]