matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionKonditionszahlen Verkettung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Konditionszahlen Verkettung
Konditionszahlen Verkettung < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konditionszahlen Verkettung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:55 Mi 01.04.2020
Autor: descom

Aufgabe
Es sei eine Funktion [mm] f:\IR\to\IR [/mm] mit [mm] x\in\IR [/mm]
Es bezeichne [mm] k_{f} [/mm] (x) die Kondition dieser Aufgabe.
Beweisen Sie, ist [mm] f:=f_{1}\circf_{2}\circ...\circf_{k} k\in\IN [/mm]
die Verkettung von k differenzierbaren Funktionen [mm] f_{i}:\IR\to\IR [/mm] i=1,..,k und ist [mm] f_{i}(f_{i+1}\circ...\circf_{k}(x)\not=0 [/mm] für i=1,...,k-1 sowie [mm] f_{k}(x)\not=0, [/mm] dann ist:
[mm] k_{f}=k_{f_{k}}(x)\produkt_{i=1}^{k-1}k_{f_{i}}(f_{i+1}\circ...\circf_{k}(x)) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Der Versuch die zu lösen war mittels vollständiger Induktion über k mit Startwert 1, mithilfe der gleich folgenden Gleichungen und der Induktionsannahmen.
Es sei [mm] f(x):=f_{1}\circf_{2}\circ...\circf_{k} f_{*}:= f_{0}(f(x)) [/mm]
Hier sind die verwendeten Gleichungen:

[mm] 1)k_{f_{0}}=\bruch{f(x)}{f_{0}(f(x)))}*\bruch{\partialf_{0}}{\partialx} [/mm]
[mm] 2)k_{f_{*}}=\bruch{x}{f_{*}}*\bruch{\partialf_{*}}{\partialx}(x) [/mm]
[mm] 3)k_{f}=\bruch{x}{f(x)}*\bruch{\partialf}{\partialx}(x) [/mm]

Dann wurde umgeformt und die Identität
[mm] bruch{\partialf_{*}}{\partialx}=bruch{\partialf_{0}}{\partialf}*bruch{\partialf}{\partialx} [/mm]
verwendet.

Der Beweis nach k+1 würde jedoch nur klappen, wenn [mm] k_{f_{*}}=k_{f_{0}}*...*k_{f_{k}} [/mm] gelten würde

Ich schätze dass bei der Wahl der Gleichungen 1 und 2 ein Fehler liegt, dieser ist mir jedoch nicht ersichtlich.
Gleichung 3 Ist die Definition der Konditionszahl für eine Funktion mit einer Variable.
Möglicherweise ist auch die Wahl der vollständigen Induktion als Beweismethode nicht passend.
Ich sehe den Fehler in meinem Ansatz leider nicht und bitte um weiterhilfe.

lg und danke im Voraus

        
Bezug
Konditionszahlen Verkettung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Mi 01.04.2020
Autor: Gonozal_IX

Hiho,

vorab: Du hast eine Vorschaufunktion. Aktuell lässt sich dein Artikel wegen Fehlformatierungen so gut wie nicht lesen. Achte da biste nächste Mal drauf.

Ich übersetze das also mal

Sei $ [mm] f:=f_{1}\circ f_{2} \circ\ldots\circ f_{k}, k\in\IN [/mm] $ mit [mm] $f_i \in C^1(\IR), f_{i}\left((f_{i+1}\circ\ldots\circ f_{k})(x)\right)\not=0 [/mm] $ (das hast du übrigens noch nirgends benutzt) sowie $ [mm] f_{k}(x)\not=0$ [/mm] (das auch nicht)

Zeige:
$ [mm] k_{f}(x) [/mm] = [mm] k_{f_{k}}(x)\produkt_{i=1}^{k-1}k_{f_{i}}\left((f_{i+1}\circ\ldots\circ f_{k})(x)\right) [/mm] $

> Der Versuch die zu lösen war mittels vollständiger Induktion

Nette Idee, hier aber unnötig (wenn auch möglich).
Schreib die rechte Seite doch mal für bspw $k=4$ hin und schau, was dir auffällt.

Letztendlich ist der Beweis ziemlich gerade heraus: Rechte Seite ausschreiben, kürzen, fertig.

Gruß,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]