matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenKongruente Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Kongruente Matrizen
Kongruente Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kongruente Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Mo 09.02.2015
Autor: eva4eva

Ich versuche mir gerade einen Überblick über Äquivalenzklassen und Normalformen zu verschaffen. Dabei stoße ich auf die Äq.klasse "Kongruenz":

quadr. Matrizen A,B Kongruent <=> es gibt quadr. Matrix S mit [mm] S^{T}AS=B [/mm]

Ferner :

quadr. Matrizen A,B ähnlich <=> es gibt quadr. Matrix S mit [mm] S^{-1}AS=B [/mm]

Kann ich daraus folgern, dass durch
A symmetrisch <=> [mm] A^{-1}=A^T [/mm] gilt:

Kongruenz ist nichts anderes als eine spezielle Form der Ähnlichkeit, nämlich der Ähnlichkeit symmetrischer Matrizen. (?)

Also reicht es, sich das einzuprägen, oder ist das eine unvollständige Sichtweise auf die Kongruenz?

Und was wäre denn die Normalform kongruenter Matrizen? Das müsste doch auch eine Matrix Diagonalform sein, oder?

        
Bezug
Kongruente Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Mo 09.02.2015
Autor: fred97


> Ich versuche mir gerade einen Überblick über
> Äquivalenzklassen und Normalformen zu verschaffen. Dabei
> stoße ich auf die Äq.klasse "Kongruenz":
>  
> quadr. Matrizen A,B Kongruent <=> es gibt quadr. Matrix S
> mit [mm]S^{T}AS=B[/mm]

Du hast etwas wichtiges vergessen: A,B kongruent <=> es gibt quadr. und invertierbare(!) Matrix S mit [mm]S^{T}AS=B[/mm]

>  
> Ferner :
>  
> quadr. Matrizen A,B ähnlich <=> es gibt quadr. Matrix S
> mit [mm]S^{-1}AS=B[/mm]
>  
> Kann ich daraus folgern, dass durch
> A symmetrisch <=> [mm]A^{-1}=A^T[/mm] gilt:



Das verstehe ich nicht !


>  
> Kongruenz ist nichts anderes als eine spezielle Form der
> Ähnlichkeit, nämlich der Ähnlichkeit symmetrischer
> Matrizen. (?)

Wo kommen immer diese symmetrischen Matrizen her ??

Wenn A und B kongruent sind, so sind sie auch ähnlich. Das Umgekehrte ist i.a. falsch.

FRED

>  
> Also reicht es, sich das einzuprägen, oder ist das eine
> unvollständige Sichtweise auf die Kongruenz?
>  
> Und was wäre denn die Normalform kongruenter Matrizen? Das
> müsste doch auch eine Matrix Diagonalform sein, oder?


Bezug
                
Bezug
Kongruente Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Mo 09.02.2015
Autor: eva4eva


> > Ich versuche mir gerade einen Überblick über
> > Äquivalenzklassen und Normalformen zu verschaffen. Dabei
> > stoße ich auf die Äq.klasse "Kongruenz":
>  >  
> > quadr. Matrizen A,B Kongruent <=> es gibt quadr. Matrix S
> > mit [mm]S^{T}AS=B[/mm]
>  
> Du hast etwas wichtiges vergessen: A,B kongruent <=> es
> gibt quadr. und invertierbare(!) Matrix S mit [mm]S^{T}AS=B[/mm]
>  >  
> > Ferner :
>  >  
> > quadr. Matrizen A,B ähnlich <=> es gibt quadr. Matrix S
> > mit [mm]S^{-1}AS=B[/mm]
>  >  
> > Kann ich daraus folgern, dass durch
> > A symmetrisch <=> [mm]A^{-1}=A^T[/mm] gilt:
>  
>
>
> Das verstehe ich nicht !


Es ist auch falsch, ich habe da vermutlich etwas verwechselt:

[mm]A^{-1}=A^T[/mm] gilt für orthogonale Matrizen.

Kann ich demnach sagen:

Kongruenz ist nichts anderes als eine spezielle Form der
Ähnlichkeit, nämlich der Ähnlichkeit ORTHOGONALER
Matrizen. (?)

>  
>
> >  

> > Kongruenz ist nichts anderes als eine spezielle Form der
> > Ähnlichkeit, nämlich der Ähnlichkeit symmetrischer
> > Matrizen. (?)
>  
> Wo kommen immer diese symmetrischen Matrizen her ??

Der Ort ist finster und nicht von dieser Welt!

Stimmt das: (?)

> > Und was wäre denn die Normalform kongruenter Matrizen? Das
> > müsste doch auch eine Matrix Diagonalform sein, oder?
>  


Bezug
                        
Bezug
Kongruente Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Mo 09.02.2015
Autor: fred97


> > > Ich versuche mir gerade einen Überblick über
> > > Äquivalenzklassen und Normalformen zu verschaffen. Dabei
> > > stoße ich auf die Äq.klasse "Kongruenz":
>  >  >  
> > > quadr. Matrizen A,B Kongruent <=> es gibt quadr. Matrix S
> > > mit [mm]S^{T}AS=B[/mm]
>  >  
> > Du hast etwas wichtiges vergessen: A,B kongruent <=> es
> > gibt quadr. und invertierbare(!) Matrix S mit [mm]S^{T}AS=B[/mm]
>  >  >  
> > > Ferner :
>  >  >  
> > > quadr. Matrizen A,B ähnlich <=> es gibt quadr. Matrix S
> > > mit [mm]S^{-1}AS=B[/mm]
>  >  >  
> > > Kann ich daraus folgern, dass durch
> > > A symmetrisch <=> [mm]A^{-1}=A^T[/mm] gilt:
>  >  
> >
> >
> > Das verstehe ich nicht !
>  
>
> Es ist auch falsch, ich habe da vermutlich etwas
> verwechselt:
>  
> [mm]A^{-1}=A^T[/mm] gilt für orthogonale Matrizen.
>  
> Kann ich demnach sagen:
>  
> Kongruenz ist nichts anderes als eine spezielle Form der
> Ähnlichkeit, nämlich der Ähnlichkeit ORTHOGONALER
> Matrizen. (?)

Nein. Ich hab keine Ahnung , worauf Du hinazs willst.


>  >  
> >
> > >  

> > > Kongruenz ist nichts anderes als eine spezielle Form der
> > > Ähnlichkeit, nämlich der Ähnlichkeit symmetrischer
> > > Matrizen. (?)
>  >  
> > Wo kommen immer diese symmetrischen Matrizen her ??
>  
> Der Ort ist finster und nicht von dieser Welt!

Ach Du dickes Ei. Wirds jetzt esoterisch ?

FRED

>  
> Stimmt das: (?)
>  > > Und was wäre denn die Normalform kongruenter

> Matrizen? Das
> > > müsste doch auch eine Matrix Diagonalform sein, oder?
> >  

>  


Bezug
                                
Bezug
Kongruente Matrizen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:12 Mo 09.02.2015
Autor: eva4eva


> > > > Ich versuche mir gerade einen Überblick über
> > > > Äquivalenzklassen und Normalformen zu verschaffen. Dabei
> > > > stoße ich auf die Äq.klasse "Kongruenz":
>  >  >  >  
> > > > quadr. Matrizen A,B Kongruent <=> es gibt quadr. Matrix S
> > > > mit [mm]S^{T}AS=B[/mm]
>  >  >  
> > > Du hast etwas wichtiges vergessen: A,B kongruent <=> es
> > > gibt quadr. und invertierbare(!) Matrix S mit [mm]S^{T}AS=B[/mm]
>  >  >  >  
> > > > Ferner :
>  >  >  >  
> > > > quadr. Matrizen A,B ähnlich <=> es gibt quadr. Matrix S
> > > > mit [mm]S^{-1}AS=B[/mm]
>  >  >  >  
> > > > Kann ich daraus folgern, dass durch
> > > > A symmetrisch <=> [mm]A^{-1}=A^T[/mm] gilt:
>  >  >  
> > >
> > >
> > > Das verstehe ich nicht !
>  >  
> >
> > Es ist auch falsch, ich habe da vermutlich etwas
> > verwechselt:
>  >  
> > [mm]A^{-1}=A^T[/mm] gilt für orthogonale Matrizen.
>  >  
> > Kann ich demnach sagen:
>  >  
> > Kongruenz ist nichts anderes als eine spezielle Form der
> > Ähnlichkeit, nämlich der Ähnlichkeit ORTHOGONALER
> > Matrizen. (?)
>  
> Nein. Ich hab keine Ahnung , worauf Du hinazs willst.

Ich glaube ich verwechsle da die Bedeutung der jeweils invertierbaren Matrix einerseits und der zueinander in Relation stehenden Matrizen andererseits.

Für ähnliche Matrizen gilt
[mm] S^{-1}AS=B [/mm]

Für kongruente Matrizen:
[mm] S^{T}AS=B [/mm]

Das ist ja fast dasselbe. "Fast" heißt: Ist [mm] S^{-1}=S^{T}, [/mm] dann ist das dasselbe. Und dies sollte der Fall sein für S:orthogonal (nicht symmetrisch!).
Nur vermute ich, dass diese Erkenntnis nichts bringt, denn dadurch sind ja nicht A,B orthogonal, was ich mich irgendwie einreden wollte.


>  
>
> >  >  

> > >
> > > >  

> > > > Kongruenz ist nichts anderes als eine spezielle Form der
> > > > Ähnlichkeit, nämlich der Ähnlichkeit symmetrischer
> > > > Matrizen. (?)
>  >  >  
> > > Wo kommen immer diese symmetrischen Matrizen her ??
>  >  
> > Der Ort ist finster und nicht von dieser Welt!
>  
> Ach Du dickes Ei. Wirds jetzt esoterisch ?

Irgendwie muss man ja versuchen, das Paradox aufzulösen: Antworten auf Fragen finden, für die es keine Antworten gibt.

Bleibt noch:

>  >  
> > Stimmt das: (?)
>  >  > > Und was wäre denn die Normalform kongruenter

> > Matrizen? Das
> > > > müsste doch auch eine Matrix Diagonalform sein, oder?
> > >  

> >  

>  


Bezug
                                        
Bezug
Kongruente Matrizen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Mi 11.02.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]