matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenkomplexe ZahlenKonjugiert komplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "komplexe Zahlen" - Konjugiert komplexe Zahlen
Konjugiert komplexe Zahlen < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konjugiert komplexe Zahlen: Ansatz
Status: (Frage) beantwortet Status 
Datum: 08:12 Mo 25.06.2012
Autor: Lewser

Aufgabe
Das Produkt aus einer komplexen Zahl z und ihrer konjugiert Komplexen beträgt 5. Der Quotient [mm] \bruch{z}{z*} [/mm] habe den Wert [mm] \bruch{3+4j}{5}. [/mm] Wie lautet die komplexe Zahl?

Ich komme auf keinen Ansatz,  wenn jemand einen Tipp hat wäre ich sehr dankbar.

        
Bezug
Konjugiert komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Mo 25.06.2012
Autor: fred97

Ansatz: z=x+jy  mit x,y [mm] \in \IR [/mm]

1. Bedingung:  (x+jy)(x-jy)=5

2. Bedingung:  [mm] \bruch{x+jy}{x-jy}=\bruch{3+4j}{5} [/mm]

FRED

Bezug
                
Bezug
Konjugiert komplexe Zahlen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:37 Mo 25.06.2012
Autor: Lewser

Also kann ich schreiben:

[mm] \bruch{x+jy}{x-jy}=\bruch{3+4j}{(x+jy)(x-jy)} [/mm]

Das hatte ich mir schon mal so aufgeschrieben, weil ich erst einmal alles notiert habe, was gegeben war. Da hakt es dann aber wieder.

Edit: Entschuldigung für den Edit, daraus habe ich jetzt gemacht:

[mm] x+jy=\bruch{3+4j}{(x+jy)} [/mm]

[mm] (x+jy)^2=3+4j [/mm]
[mm] x+jy=\wurzel{3+4j} [/mm]

ist das korrekt?

Bezug
                        
Bezug
Konjugiert komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Mo 25.06.2012
Autor: Diophant

Hallo,

> Also kann ich schreiben:
>
> [mm]\bruch{x+jy}{x-jy}=\bruch{3+4j}{(x+jy)(x-jy)}[/mm]
>
> Das hatte ich mir schon mal so aufgeschrieben, weil ich
> erst einmal alles notiert habe, was gegeben war. Da hakt es
> dann aber wieder.

hm, man kann da aber sehr naheliegendes tun: multipliziere mit dem rechten Nenner, dann hast du die Brüche komplett aufgelöst. Danach musst du links den entstandenen Term ausmultiplizieren und zum Schluss ein einfacher Koeffizientenvergleich.


GRuß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]