matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenKonsistenzordnung aus Grafik
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentialgleichungen" - Konsistenzordnung aus Grafik
Konsistenzordnung aus Grafik < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konsistenzordnung aus Grafik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:12 Fr 27.02.2009
Autor: martin1984

Aufgabe
Gegeben sei eine Grafik, in der die Fehlerentwicklung eines oder mehrerer Verfahren wahrscheinlich logarithmisch aufgetragen ist in Abhängigkeit von der Schrittweit (macht das Sinn?).
Wie kann ich aus dieser Grafik die Konsistenzordnung für das angewandte Runge-Kutta Verfahren bestimmen?

Hallo!

Erste Frage: Macht das Sinn, dass die oben genannte Grafik so aussieht? Ich weiß nur, dass sowas wohl in der Klausur drankommt und wir daraus die Konsistenzordnung bestimmen sollen und evtl sogar das Verfahren...

Natürlich habe ich diese Frage in keinem anderen Forum gestellt.

Vielen Dank schonmal
Martin

        
Bezug
Konsistenzordnung aus Grafik: Antwort
Status: (Antwort) fertig Status 
Datum: 02:36 Sa 28.02.2009
Autor: max3000

Leider sehe ich kein Bild.
Aber ich glaube ich weiß was du meinst.
Zeichne dir mal in das Diagramm des Fehlerverlaufs folgende Geraden (in matlab):

    hold on;
    loglog(M, [mm] M.^{-1}*M(1)^1 [/mm] * maxerror(1), ':g');
    loglog(M, [mm] M.^{-2}*M(1)^2 [/mm] * maxerror(1), ':r');
    loglog(M, [mm] M.^{-3}*M(1)^3 [/mm] * maxerror(1), ':y');
    hold off;

M ist dabei der Vektor, der die anzahl der Stützstellen für das RKV beinhaltet, also z.b.

     M = [10, 20, 40, 80];

Die erste Gerade repräsentiert Konsistenzordnung 1, die zweite KO 2, und die dritte KO 3. Ausgehend vom Fehler des Startpunktes konvergieren die Funktionen linear, quadratisch bzw. kubisch ohne Vorfaktor gegen 0, genau wie der Fehlerverlauf es tun sollte.

Nochwas: Der Operator .^ heißt in Matlab, dass jedes Element des Vektors mit dem Exponenten potenziert wird und loglog heißt, dass vorm plotten der Logarithmus von Argument und Funktionswert gezogen wird.

Hilft dir das irgendwie weiter?
Brauchst du dafür eine Matlab-Implementierung?

Ansonsten mal die in dein Bild die Funktionen [mm] \bruch{1}{x}, \bruch{1}{x^2} [/mm] , ... ein. Was am ehesten wie der Fehlerverlauf aussieht, ist dann auch die Konsistenzordnung.

Schönen Gruß,

Max

Bezug
                
Bezug
Konsistenzordnung aus Grafik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 So 01.03.2009
Autor: martin1984

Edit: ups, hab vergessen mein bild anzuhängen. jetzt ist es dabei! Bitte hilf mir da nochmal jemand :-)

Aufgabe
Vielen Dank, aber ich weiß noch nicht so wirklich, was du mit den 1/x, [mm] 1/x^2 [/mm] usw. meinst!


[Dateianhang nicht öffentlich]

Ich hab einfach mal die Aufgabenstellung als .doc angehängt. Hier soll den Kurven das jeweilige Verfahren zugeordnet werden.
Aber was ist, wenn ich jetzt ohne Matlab aus den Kurven die Konsistenzordnungen herausfinden will, wie mach ich das denn?

Vielen Dank
Martin

Dateianhänge:
Anhang Nr. 1 (Typ: doc) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
Konsistenzordnung aus Grafik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 Mo 02.03.2009
Autor: martin1984

Aufgabe
Hatte vergessen, die Grafik aus meiner obigen Frage hochzuladen. Sorry

Wäre nett, wenn nochmal jemand drüberschauen könnte. Danke

Bezug
                                
Bezug
Konsistenzordnung aus Grafik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 Di 03.03.2009
Autor: max3000

Ich seh immer noch keine Grafik :D.
Hast du die Aufgabe in Matlab implementiert?
Wenn ja... zeig her.

Bezug
                        
Bezug
Konsistenzordnung aus Grafik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Di 03.03.2009
Autor: martin1984

Hallo Max!

Die Grafik ist in der zweiten Frage, die ich gestellt hab. In der Baumhierarchie glaube ich an 3. Stelle. Version 2 :-)

Danke!


Bezug
                        
Bezug
Konsistenzordnung aus Grafik: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Mi 04.03.2009
Autor: max3000

Trage einfach mal in den Fehlerverlauf folgende Werte ein:

h = [mm] [10^0, 10^{-1}, 10^{-2}, 10^{-3},\ldots] [/mm]
error = [mm] [10^0, 10^{-1}, 10^{-2}, 10^{-3},\ldots] [/mm]

Das ist die Gerade, die dem Fehler der Ordnung 1 (error=O(h) )entsprechen würde.
Dann trägst du die Gerade für den quadratischen Fehler [mm] (error=O(h^2) [/mm] ) ein:

h = [mm] [10^0, 10^{-1}, 10^{-2}, 10^{-3},\ldots] [/mm]
error = [mm] [10^0, 10^{-2}, 10^{-4}, 10^{-6},\ldots] [/mm]

und so weiter.
Dann müssten deine Fehlerverläufe den Geraden sehr ähnlich sein, zumindest was den Anstieg angeht.
Wenn du das mal machst, siehst du wahrscheinlich von alleine, welche Ordnung die Fehler haben.

Ansonsten scann das vielleicht mal ein und lade es dann hoch.

Schönen Gruß

Max

Bezug
                                
Bezug
Konsistenzordnung aus Grafik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:05 Mi 04.03.2009
Autor: martin1984

ok, danke max. das leuchtet ein.

Gruß Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]