matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Konstante ja oder nein?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Konstante ja oder nein?
Konstante ja oder nein? < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konstante ja oder nein?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Di 26.02.2013
Autor: Bodo0686

Hallo,
wenn ich eine Fläche gegeben habe die wie folgt aussieht:

[mm] c(t)=(v_0 \cdot [/mm] sint, t, [mm] v_0 \cdot [/mm] cost)

die Ableitung nach t bilde:

[mm] c'(t)=(v_0 \cdot [/mm] cost, 1, [mm] -v_0 \cdot [/mm] sint)

stimmt doch bislang?

und dann [mm] ||c'||^3 [/mm] berechne: Ergebnis: [mm] (1+v_0)^\frac{3}{2}. [/mm]
Ist das jetzt eine Konstante?

Grüße!

        
Bezug
Konstante ja oder nein?: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Di 26.02.2013
Autor: fred97


> Hallo,
>  wenn ich eine Fläche gegeben habe die wie folgt
> aussieht:
>  
> [mm]c(t)=(v_0 \cdot[/mm] sint, t, [mm]v_0 \cdot[/mm] cost)
>  
> die Ableitung nach t bilde:
>  
> [mm]c'(t)=(v_0 \cdot[/mm] cost, 1, [mm]-v_0 \cdot[/mm] sint)
>  
> stimmt doch bislang?

Ja


>
> und dann [mm]||c'||^3[/mm] berechne: Ergebnis: [mm](1+v_0)^\frac{3}{2}.[/mm]
>  Ist das jetzt eine Konstante?

ja

FRED

>  
> Grüße!


Bezug
                
Bezug
Konstante ja oder nein?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Di 26.02.2013
Autor: Bodo0686


> > Hallo,
>  >  wenn ich eine Fläche gegeben habe die wie folgt
> > aussieht:
>  >  
> > [mm]c(t)=(v_0 \cdot[/mm] sint, t, [mm]v_0 \cdot[/mm] cost)
>  >  
> > die Ableitung nach t bilde:
>  >  
> > [mm]c'(t)=(v_0 \cdot[/mm] cost, 1, [mm]-v_0 \cdot[/mm] sint)
>  >  
> > stimmt doch bislang?
>
> Ja
>  
>
> >
> > und dann [mm]||c'||^3[/mm] berechne: Ergebnis: [mm](1+v_0)^\frac{3}{2}.[/mm]
>  >  Ist das jetzt eine Konstante?
>  
> ja
>  
> FRED
>  >  
> > Grüße!
>  

Ok, jetzt kommt die nächste Frage und zwar, wenn ich jetzt entscheiden möchte, ob eine Geodäte vorliegt (gegeben wenn [mm] k_g=0 [/mm] und ||c'(t)||=const.) und ich hätte folgende Ergebnisse:

[mm] k_g [/mm] = [mm] \frac{{-v_0}^3-v_0 }{(1+v_0^2)} [/mm] und [mm] ||c'(t)||=(1+v_0)^\frac{1}{2} [/mm]

Dann liegt doch keine Geodäte vor, weil [mm] k_g \not= [/mm] 0, richtig!?

Bezug
                        
Bezug
Konstante ja oder nein?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Di 26.02.2013
Autor: steppenhahn

Hallo,



> > > [mm]c(t)=(v_0 \cdot[/mm] sint, t, [mm]v_0 \cdot[/mm] cost)

> > > [mm]c'(t)=(v_0 \cdot[/mm] cost, 1, [mm]-v_0 \cdot[/mm] sint)


> > > und dann [mm]||c'||^3[/mm] berechne: Ergebnis: [mm](1+v_0)^\frac{3}{2}.[/mm]


> Ok, jetzt kommt die nächste Frage und zwar, wenn ich jetzt
> entscheiden möchte, ob eine Geodäte vorliegt (gegeben
> wenn [mm]k_g=0[/mm] und ||c'(t)||=const.) und ich hätte folgende
> Ergebnisse:
>  
> [mm]k_g[/mm] = [mm]\frac{{-v_0}^3-v_0 }{(1+v_0^2)}[/mm] und
> [mm]||c'(t)||=(1+v_0)^\frac{1}{2}[/mm]
>  
> Dann liegt doch keine Geodäte vor, weil [mm]k_g \not=[/mm] 0,
> richtig!?

Da ist noch ein kleiner Fehler bei $||c'(t)||$, da sollte [mm] $v_0^2$ [/mm] statt [mm] $v_0$ [/mm] stehen.

Zu diesem [mm] $k_g$ [/mm] gehört auch eine Fläche, in die das $c(t)$ eingebettet wurde (siehe []Geodätische Krümmung).

Weil du nicht schreibst, welche Fläche das ist, können wir dein Ergebnis nicht überprüfen.

Aber offensichtlich ist [mm] $k_g$ [/mm] laut deiner Rechnung nicht Null, und bei einer geodätischen muss dieser Wert Null sein. Also liegt keine Geodäte vor.


Viele Grüße,
Stefan

Bezug
                                
Bezug
Konstante ja oder nein?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:19 Mi 27.02.2013
Autor: Bodo0686

Es handelt sich um diese Fläche:
$f(u,v)=(v [mm] \cdot [/mm] sinu, u, [mm] v\cdot [/mm] cosu)$

mit der Aufgabe, dass ich die Krümmung, geödätische und Normalkrümmung der Parameterlinien bestimmen soll.

[mm] $k_g=\frac{det(c',c'',n)}{||c'||^3}$ [/mm]

Da hab ich $u(t)=t, [mm] v(t)=v_0$ [/mm] gesetzt mit $c=f [mm] \circ [/mm] u, c(t)=f(u(t),v(t))$

Kann ich hier die Krümmung K mit [mm] K^2=K_g^2+K_n^2 [/mm] bestimmen?

Grüße!

Bezug
                                        
Bezug
Konstante ja oder nein?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 01.03.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Konstante ja oder nein?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:53 Di 26.02.2013
Autor: abakus


> Hallo,
>  wenn ich eine Fläche gegeben habe die wie folgt
> aussieht:

Hallo,
ist denn das eine Fläche? Das ist doch nur eine um die y-Achse gewickelte Schraubenlinie.
Gruß Abakus

>  
> [mm]c(t)=(v_0 \cdot[/mm] sint, t, [mm]v_0 \cdot[/mm] cost)
>  
> die Ableitung nach t bilde:
>  
> [mm]c'(t)=(v_0 \cdot[/mm] cost, 1, [mm]-v_0 \cdot[/mm] sint)
>  
> stimmt doch bislang?
>
> und dann [mm]||c'||^3[/mm] berechne: Ergebnis: [mm](1+v_0)^\frac{3}{2}.[/mm]
>  Ist das jetzt eine Konstante?
>  
> Grüße!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]