Kontinuitätsgleichung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Hi!
Ich habe eine Stromdichte gegeben:
[mm]\vec{j}(\vec{r},t) = [k \cdot r \cdot \cos(k \cdot r -\omega \cdot t) - \sin(k \cdot r-\omega \cdot t)] r^{-2} \alpha \cdot \vec{e_{r}}[/mm]
mit [mm]\alpha = konst.[/mm]
Ich soll nun mit Hilfe der Kontinuitätsgleichung [mm]0 = \frac{\partial n}{\partial t} + \vec{\nabla} \cdot \vec{j}[/mm] meine Dichteverteilung [mm]n(\vec{r},t)[/mm] ausrechnen.
Hier habe ich nun eine Frage. Darf ich meine Stromdichte nun als Vektor so schreiben:
[mm] \begin{pmatrix} [k \cdot r \cdot \cos(k \cdot r -\omega \cdot t) - \sin(k \cdot r-\omega \cdot t)] r^{-2} \alpha] \\ 0 \\ 0 \end{pmatrix}
[/mm]
Dann kann ich die Divergenz in Kugelkoordinaten ausrechnen, indem ich einfach die erste Komponente des Vektors nach r ableite.
Wenn ich damit fertig bin kann ich diese Divergenz nach t integrieren und bekomme so meine gesuchte Dichteverteilung [mm]n(\vec{r},t)[/mm].
Allerdings weiß ich nicht ob ich meine Stromdichte in dieser Form schreiben kann? Ich habe den Einheitsvektor so interpretiert:
[mm] \vec{e_{r}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} [/mm] auf Kugelkoordinaten bezogen!
Danke schonmal für die Antworten!
Bis denne,
Matze
P.S.:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:41 Mo 13.04.2009 | Autor: | Kroni |
Hi und ,
wenn du dir als Basis die Einheitsvektoren [mm] $\vec{e_r}$, $\vec{e_\varphi}$ [/mm] und [mm] $\vec{e_\vartheta}$ [/mm] in der Reihenfolge definierst, dann kannst du den Vektor so schreiben.
Aber ich würde das einfach so stehen lassen: [mm] $\vec{j}=j(r,t)\vec{e_r}$. [/mm] Denn das ist doch eindeutig. Da braucht man doch dann diese "Vektordarstellung" in Form von [mm] $\pmat{j_r\\j_\varphi \\ j_\vartheta}$ [/mm] darstellen.
In der obigen Darstellung sieht man dann eigentlich auch schon, wie man was ableiten muss, und vergisst dann zB beim Laplace-Operator die Ableitungen nach [mm] $\varphi$ [/mm] in den Einheitsvektoren nicht etc, was man in der Form [mm] $\pmat{j_r\\j_\varphi \\ j_\vartheta}$ [/mm] schnell vergessen kann.
Ansonsten ist aber das weitere Vorgehen den Nabla-Operator in Kugelkoordinaten auf den Ausdruck oben anzuwenden, und dann nach t zu integrieren korrekt.
LG
Kroni
|
|
|
|