matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenKontrolle
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Kontrolle
Kontrolle < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kontrolle: Darstellungsmatrix
Status: (Frage) beantwortet Status 
Datum: 19:14 Mi 15.08.2012
Autor: teo

Aufgabe
Es ist [mm] \{1,\wurzel[3]{5},(\wurzel[3]{5})^2\} [/mm] eine [mm] \IQ-Basis [/mm] von [mm] \IQ(\wurzel[3]{5}). [/mm] Geben Sie eine Darstellungsmatrix von [mm] \phi: \IQ(\wurzel[3]{5}) \to \IQ(\wurzel[3]{5}), x \mapsto \wurzel[3]{5}*x[/mm] an.

Hallo habe das schon lang nicht mehr gemacht und ich glaube die Lösung ist falsch.

Es gilt:

[mm] \phi(1)= 0*1+1*\wurzel[3]{5}+0*(\wurzel[3]{5})^2 [/mm]
[mm] \phi(\wurzel[3]{5})= 0*1 + 0*\wurzel[3]{5}+1*(\wurzel[3]{5})^2 [/mm]
[mm] \phi((\wurzel[3]{5})^2)= 5*1+0*\wurzel[3]{5}+0*(\wurzel[3]{5})^2 [/mm]

So in der Lösung steht die Darstellungmatrix: [mm] \pmat{0 & 0 & 5 \\ 1 & 0 & 0 \\ 0 & 1 & 0} [/mm]

Meine Darstellungsmatrix ist aber: [mm] \pmat{0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 0 & 0} [/mm]

Es muss doch gelten:

[mm] \phi(\vektor{1 \\ \wurzel[3]{5} \\ (\wurzel[3]{5})^2}) = \pmat{0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & 0 & 0}*(\vektor{1 \\ \wurzel[3]{5} \\ (\wurzel[3]{5})^2}) = \vektor{(\vektor{\wurzel[3]{5} \\ (\wurzel[3]{5})^2 \\ 1} [/mm]

Meine Darstellungsmatrix erfüllt dies. Die Darstellungsmatrix der Lösung nicht. Habe ich da einen Denkfehler drin oder stimmt die Lösung nicht?

Vielen Dank fürs drüberschaun!

Grüße

        
Bezug
Kontrolle: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 15.08.2012
Autor: Schadowmaster

moin,

Du musst darauf achten, in welcher Basis du arbeitest.
Du bist nicht im [mm] $\IQ^3$, [/mm] also kannst du auch nicht so ohne weiteres deine Vektoren in der Standardbasis schreiben.
Du verwendest, dass dein [mm] $\IQ-$Vektorraum [/mm] isomorph ist zu [mm] $\IQ^3$. [/mm]
Das heißt also etwa [mm] $\vektor{0 \\ 1 \\ 0} \hat{=} \sqrt[3]{5}$. [/mm]
Wenn du deine Matrix aufstellen möchtest musst du immer bedenken, wofür die Vektoren, die du drannmultiplizierst in Wirklichkeit stehen.
Vielleicht solltest du dein Wissen über Basiswechsel oder Darstellungsmatrizen bezüglich verschiedener Basen nochmal auffrischen.

lg

Schadow

Bezug
                
Bezug
Kontrolle: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:45 Mi 15.08.2012
Autor: teo

Hallo,

Danke für die Antwort. Das mit dem Auffrischen stimmt wohl...
Aber welche Darstellungsmatrix ist denn nun die richtige? Das wäre noch schön zu wissen.

Danke!

Bezug
        
Bezug
Kontrolle: Frage beantwortet!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 Mi 15.08.2012
Autor: teo

Sry, zu voreilig nachgefragt!

Frage braucht nicht mehr beantwortet zu werden. Vlt. kann das ja jmd. umstellen!

Vielen Dank!

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]