Konvergente Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:35 Di 06.11.2012 | Autor: | Knueffi |
Aufgabe | Seien [mm] (a_{n})_{n\in\IN} [/mm] und [mm] (a_{n})_{n\in\IN} [/mm] zwei konvergente Folgen mit Grenzwert [mm] a\in \IR [/mm] bzw. [mm] b\in\IR, b\not=0.
[/mm]
Zeige, dass gilt:
a) Sei [mm] \lambda \in [/mm] IR, dann ist [mm] lim_{n\to\infty}(\lambda*a_{n})=\lambda*a
[/mm]
b) Für [mm] b_{n}\not=0 [/mm] für alle [mm] n\in\IN [/mm] ist [mm] lim_{n\to\infty}(a_{n}/b_{n})=(a/b) [/mm] |
Also ich weiß leider gar nicht wie ich an diese Aufgabe heran gehen soll.
zu a) Macht man da mit [mm] |x_{n}-a|=\varepsilon, [/mm] denn [mm] a=\lambda*a
[/mm]
aber ich weß nicht wie ich das auflösen soll...bei mir kommt da nur Mist raus.
Dann hätte ich ja [mm] |\lambda*a_{n}-\lambda*a|=\varepsilon
[/mm]
Und wie würde ich dann weiter machen? Ich kann damit nicht umgehen, dass ich dann bei dem einen das n im Index habe!
zu b) Auch der gleiche Ansatz wie bei a
Tut mir leid, wenn das zu wenig Eigenanteil ist, aber ich habe echt keine Ahnung!
Bitte um Hilfe!
Danke im Voraus
Eure Knueffi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:00 Di 06.11.2012 | Autor: | Marcel |
Hallo,
> Seien [mm](a_{n})_{n\in\IN}[/mm] und [mm](a_{n})_{n\in\IN}[/mm] zwei
> konvergente Folgen mit Grenzwert [mm]a\in \IR[/mm] bzw. [mm]b\in\IR, b\not=0.[/mm]
>
> Zeige, dass gilt:
> a) Sei [mm]\lambda \in[/mm] IR, dann ist
> [mm]lim_{n\to\infty}(\lambda*a_{n})=\lambda*a[/mm]
>
> b) Für [mm]b_{n}\not=0[/mm] für alle [mm]n\in\IN[/mm] ist
> [mm]lim_{n\to\infty}(a_{n}/b_{n})=(a/b)[/mm]
> Also ich weiß leider gar nicht wie ich an diese Aufgabe
> heran gehen soll.
> zu a) Macht man da mit [mm]|x_{n}-a|=\varepsilon,[/mm] denn
> [mm]a=\lambda*a[/mm]
> aber ich weß nicht wie ich das auflösen soll...bei mir
> kommt da nur Mist raus.
betrachte DU zunächst den Fall [mm] $\lambda=0\,.$ [/mm] Ich gehe nämlich nun
o.B.d.A. den Fall [mm] $\lambda \not=0$ [/mm] durch:
Sei [mm] $\varepsilon [/mm] > [mm] 0\,.$ [/mm] Wegen [mm] $a_n \to [/mm] a$ existiert auch zu
[mm] $\varepsilon':=\varepsilon/|\lambda|\,,$ [/mm] weil dann [mm] $\varepsilon'> [/mm] 0$ ist,
ein [mm] $N'=N'(\varepsilon') \in \IN$ [/mm] so, dass
[mm] $$|a_n-a| [/mm] < [mm] \varepsilon' \text{ für alle }n \ge N'\,.$$
[/mm]
Setze nun [mm] $N=N(\varepsilon):=N'\,$ [/mm] und denke für $n [mm] \ge [/mm] N$ über den
Ausdruck
[mm] $$\left|\;\;{\lambda}*{a_n}-{\lambda}*a \;\;\right|$$
[/mm]
nach!
> Dann hätte ich ja [mm]|\lambda*a_{n}-\lambda*a|=\varepsilon[/mm]
> Und wie würde ich dann weiter machen? Ich kann damit
> nicht umgehen, dass ich dann bei dem einen das n im Index
> habe!
> zu b) Auch der gleiche Ansatz wie bei a
>
> Tut mir leid, wenn das zu wenig Eigenanteil ist, aber ich
> habe echt keine Ahnung!
Zu b):
Wegen [mm] $b_n \to [/mm] b$ ist [mm] $(b_n)_n$ [/mm] beschränkt (d.h. es existiert ein $C [mm] >0\,$
[/mm]
so, dass [mm] $|b_n| \le [/mm] C$ für alle $n [mm] \in \IN$) [/mm] - falls das unbekannt sein sollte,
dann beweise es! Außerdem muss wegen $b [mm] \not=0$ [/mm] gelten, dass fast
alle [mm] $b_n \not=0$ [/mm] sind - aber wir gehen hier, weil wir ja [mm] $a_n/b_n$
[/mm]
anscheinend immer hinschreiben dürfen, eh davon aus, dass alle [mm] $b_n$
[/mm]
erfüllen, dass [mm] $b_n \not=0\,.$
[/mm]
Ansonsten hilft hier folgendes:
[mm] $$|\;\;a_n/b_n\;-\;a/b\;\;|=\frac{|a_nb-ab_n|}{|b*b_n|}$$
[/mm]
Schätze nun den Nenner (der $> [mm] 0\,$ [/mm] ist) mal nach unten mit einer
geeigneten Zahl $> [mm] 0\,$ [/mm] ab. (Beachte, dass [mm] $|b_n| \le [/mm] C$ mit einem
$C > 0$ stets!)
Und den Zähler schreibe um zu
[mm] $$|a_nb-ab_n|=|(a_n-a)*b+ab-ab_n|\,.$$
[/mm]
Suche nun nach dem Ausdruck [mm] $a(b-b_n)$ [/mm] und wende dann im
Zähler (der war ja [mm] $|a_nb-ab_n|$) [/mm] noch die Dreiecksungleichung an.
Und ganz am Ende überlegst Du Dir dann:
Sei [mm] $\varepsilon [/mm] > [mm] 0\,.$ [/mm] Wähle [mm] $\varepsilon_1 [/mm] > 0$ und [mm] $\varepsilon_2 [/mm] > 0$
so, dass [mm] $\varepsilon_1+\varepsilon_2 \le \varepsilon\,.$ [/mm] (Warum
existieren solche [mm] $\varepsilon_{1,2}$?)
[/mm]
Nun definiere auch noch [mm] $\varepsilon_1' [/mm] > 0$ und [mm] $\varepsilon_2' [/mm] > 0$
so, dass Du mit [mm] $a_n \to [/mm] a$ und [mm] $b_n \to [/mm] b$ und der obigen Abschätzung
für [mm] $|a_n/b_n\;\;-\;\;a/b|=|(a_nb-ab_n)/(b*b_n)|$ [/mm] "insofern etwas
anfangen kannst, als dass Du dann weißt, dass dieser Term
[mm] $\le \varepsilon_1+\varepsilon_2$ [/mm] für alle genügend große [mm] $n\,$ [/mm] werden
wird". Dabei ist dann [mm] $N=N(\varepsilon)$ [/mm] als das Maximum von zwei
Zahlen, die man etwa hier [mm] $N_1'$ [/mm] und [mm] $N_2'$ [/mm] nennt, zu setzen.
P.S.: Wenn Du beim zweiten Teil erstmal "hängst", ist das nicht schlimm.
Du solltest aber wenigstens erstmal alles abschätzen, so, wie ich es
vorgeschlagen habe! Bei dem Rest drücke ich mich ja auch nicht an allen
Stellen wirklich konkret aus - aber das ist vielleicht auch gut, damit Du ein
wenig "rumspielst" und mal guckst, was ich denn meinen "könnte"!
Gruß,
Marcel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 07:51 Mi 07.11.2012 | Autor: | Knueffi |
Ok, super Danke...werde mich in der Uni heute damit auseinandersetzen...aber ich schätze, da kommen heute Abend noch ein paar Fragen!
Alles ist mir gerade noch nicht so wirklich klar :(
Aber mal sehen was der Tag bringt ;)
Lg Knueffi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:56 Mi 07.11.2012 | Autor: | Marcel |
Hallo,
> Ok, super Danke...werde mich in der Uni heute damit
> auseinandersetzen...aber ich schätze, da kommen heute
> Abend noch ein paar Fragen!
> Alles ist mir gerade noch nicht so wirklich klar :(
> Aber mal sehen was der Tag bringt ;)
na, zuerst mal solltest Du die a) verstehen. Mache Dir dabei klar:
[mm] $(\*)\;\;\;$ [/mm] "Wenn für alle [mm] $\tilde{\varepsilon} [/mm] > 0$ ein [mm] $N=N(\tilde{\varepsilon})$ [/mm] existiert so, dass ..."
dann gilt das auch für ein spezielles [mm] $\tilde{\varepsilon}> 0\,,$ [/mm] hier [mm] $\tilde{\varepsilon}=\varepsilon' [/mm] > [mm] 0\,.$
[/mm]
In der Aufgabe hatten wir IRGENDEIN [mm] $\varepsilon [/mm] > 0$ hergenommen. Dann haben
wir damit ein [mm] $\varepsilon'$ [/mm] definiert, welches dadurch [mm] $\varepsilon' [/mm] > 0$ erfüllt. Dann
haben wir in [mm] $(\*)$ [/mm] bzw. den hier stehenden Kommentar dazu geguckt...
Gruß,
Marcel
|
|
|
|