matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz-Fibonacci
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz-Fibonacci
Konvergenz-Fibonacci < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz-Fibonacci: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:46 So 11.12.2011
Autor: quasimo

Aufgabe
Mit Hilfe einer geeigneten Abschätzung für die Fibonacci-Zahlen [mm] F_k, [/mm] k [mm] \in \IN, [/mm] zeige man die Konvergenz der Reihe [mm] \sum_{k=1}^\infty [/mm] 1/ [mm] F_k [/mm]

Ich muss irgdnwie eine Majorante finden!


Wäre für jeden Hinweis dankbar!

        
Bezug
Konvergenz-Fibonacci: Antwort
Status: (Antwort) fertig Status 
Datum: 01:18 Mo 12.12.2011
Autor: leduart

Hallo
wiki, sagt dir viel über die [mm] F_k [/mm] also such die was geeignetes aus. z.Bsp hilft dann das Quotientenkriterium.

gruss leduart

Bezug
                
Bezug
Konvergenz-Fibonacci: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Mo 12.12.2011
Autor: quasimo

Wir haben in der Vorlesung eigentlich noch nicht Fibonacci Zahlen gemacht.
Von einen Koleggen hab ich gehört dass man eine Majorante finden soll und diese ist [mm] \sum_{k=12}^\infty 1/k^2 [/mm] , kann man auch mit vollstädniger Indukion beweisen!
Aber wie kommt man auf die Majorante???

Bezug
                        
Bezug
Konvergenz-Fibonacci: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mo 12.12.2011
Autor: fred97


> Wir haben in der Vorlesung eigentlich noch nicht Fibonacci
> Zahlen gemacht.
>  Von einen Koleggen hab ich gehört dass man eine Majorante
> finden soll und diese ist [mm]\sum_{k=12}^\infty 1/k^2[/mm] , kann
> man auch mit vollstädniger Indukion beweisen!
>  Aber wie kommt man auf die Majorante???

Ja, es gilt [mm] F_n \ge n^2 [/mm]  für n [mm] \ge [/mm] 12

Das kannst Du induktiv beweisen.

FRED


Bezug
                                
Bezug
Konvergenz-Fibonacci: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Mo 12.12.2011
Autor: quasimo


> > Wir haben in der Vorlesung eigentlich noch nicht Fibonacci
> > Zahlen gemacht.
>  >  Von einen Koleggen hab ich gehört dass man eine
> Majorante
> > finden soll und diese ist [mm]\sum_{k=12}^\infty 1/k^2[/mm] , kann
> > man auch mit vollstädniger Indukion beweisen!
>  >  Aber wie kommt man auf die Majorante???
>
> Ja, es gilt [mm]F_n \ge n^2[/mm]  für n [mm]\ge[/mm] 12
>  
> Das kannst Du induktiv beweisen.

Ja das schaffe ich auch bzw. hab ich gemacht. Aber ich würde nie auf die idee kommen, dass dies gilt!! Wie kann man sich das herleiten?


Bezug
                                        
Bezug
Konvergenz-Fibonacci: Antwort
Status: (Antwort) fertig Status 
Datum: 07:46 Di 13.12.2011
Autor: fred97

Hier

http://de.wikipedia.org/wiki/Fibonacci-Folge

findest Du eine Tabelle.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]