matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Aufgabe
Status: (Frage) überfällig Status 
Datum: 21:26 So 05.11.2006
Autor: mathe-trottel

Aufgabe
Sei [mm] \pi [/mm] : [mm] \IN [/mm] --> [mm] \IN [/mm] eine bijektive Abbildung, [mm] (a_{n})_{n \in \IN} [/mm] eine  Folge.
Zeige [mm] (a_{n})_{n \in \IN} [/mm] konvergent [mm] \gdw (a_{\pi (n)})_{n \in \IN} [/mm]

Hallo, ich brauche nochmal eure Hilfe. Ich verstehe was Konvergenz und Bjiktiv und so bedeutet. Aber mit der Aufgabe komme ich nicht klar. kann mir hier wohl jemand helfen?Wäre echt nett. An dieser Aufgabe verbeiß ich mich

        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:34 Mo 06.11.2006
Autor: mathe-trottel

kann mir hier bitte noch jemand helfen?

Bezug
        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Mo 06.11.2006
Autor: zahlenspieler

Hi mahte-trottel,
> Sei [mm]\pi[/mm] : [mm]\IN[/mm] --> [mm]\IN[/mm] eine bijektive Abbildung, [mm](a_{n})_{n \in \IN}[/mm]
> eine  Folge.
>  Zeige [mm](a_{n})_{n \in \IN}[/mm] konvergent [mm]\gdw (a_{\pi (n)})_{n \in \IN}[/mm]
>  
> Hallo, ich brauche nochmal eure Hilfe. Ich verstehe was
> Konvergenz und Bjiktiv und so bedeutet. Aber mit der
> Aufgabe komme ich nicht klar. kann mir hier wohl jemand
> helfen?Wäre echt nett. An dieser Aufgabe verbeiß ich mich  

Sei [mm] $(a_{\pi(n)})_{n \in \IN}$ [/mm] konvergent. genau dann ist die folge ja auch beschränkt. Und das passiert genau dann, wenn die Menge der Folgenglieder beschränkt ist. Und nu laß mal die Inverse von [mm] $\pi$ [/mm] auf diese Menge los ...
Hoffe das hilft
zahlenspieler

Bezug
                
Bezug
Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:37 Mo 06.11.2006
Autor: mathe-trottel

hey danke...aber wie meinst du das mit der inversen?das versteh ich nicht...wie soll das denn gehen? ich hoffe du kannst mir das erklären

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 Mo 06.11.2006
Autor: mathe-trottel

kann mir bitte noch jemand helfen? ich muss es nun morgen abgeben und versteh es einfach nicht. bitte bitte, ist echt dringend :-(

Bezug
                        
Bezug
Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Mi 08.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]