matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Konvergenz zeigen
Status: (Frage) beantwortet Status 
Datum: 17:35 Mi 29.11.2006
Autor: Germaican

Aufgabe
Zeigen sie die Konvergenz nachstehender Folgen reeller Zahlen und bestimmen sie den Grenzwert.
a) [mm] an:\bruch{n^3 +5n^2+0.5(-1)^n}{5n^3 + 3n +1} [/mm]

b) bn : [mm] \bruch{n}{2^n} [/mm]

zu a) den Grenzwert zu bestimmen hab ich geschafft. 1/5 is die Lösung. Nun muss ich noch zeigen, dass der Grenzwert 1/5 existiert. Das muss ich mit der [mm] \varepsilon [/mm] machen. Nur da hängst bei mir. Wie des geht weiß ich net -> help me
zu b) hier sieht man ja dass der Grenzwert 0 ist. Nur der Beweis fällt mir ebenfalls schwer -> help me


Danke für eure Hilfe

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Fr 01.12.2006
Autor: angela.h.b.


> Zeigen sie die Konvergenz nachstehender Folgen reeller
> Zahlen und bestimmen sie den Grenzwert.
>  a) [mm]an:\bruch{n^3 +5n^2+0.5(-1)^n}{5n^3 + 3n +1}[/mm]
>  
> b) bn : [mm]\bruch{n}{2^n}[/mm]
>  zu a) den Grenzwert zu bestimmen hab ich geschafft. 1/5 is
> die Lösung. Nun muss ich noch zeigen, dass der Grenzwert
> 1/5 existiert. Das muss ich mit der [mm]\varepsilon[/mm] machen. Nur
> da hängst bei mir. Wie des geht weiß ich net -> help me


Hallo,

bei a) würde ich gar nichts mit [mm] \varepsilon [/mm] machen. Erweitere den Bruch mit [mm] \bruch{1}{n^3}. [/mm] Anschließend kannst Du direkt den limes bilden.


>  zu b) hier sieht man ja dass der Grenzwert 0 ist. Nur der
> Beweis fällt mir ebenfalls schwer -> help me

Hier kannst Du zeigen [mm] n^2 \le 2^n [/mm] für n<3. (Induktion)

Daraus bekommst Du [mm] \bruch{n}{2^n}<\bruch{1}{n} [/mm] Natürlich ist [mm] \bruch{n}{2^n}>0, [/mm] also  [mm] 0<\bruch{n}{2^n}<\bruch{1}{n}. [/mm]
Deine Folge ist umzingelt, Du kannst den limes drauf loslassen.

Gruß v. Angela

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]