matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Abschätzung
Status: (Frage) beantwortet Status 
Datum: 18:16 Di 28.07.2009
Autor: Wolfram

Aufgabe
[mm] \summe_{i=1}^{\infty} \bruch{3n \wurzel[6]{5n^{2}+3}}{(n+1)^{2} \wurzel[3]{4n^{2}+2n-1}} [/mm]

ich würde gerne wissen wie man diese folge abschätz,
da mir das nicht ganz einleuchtet wie abgeschätzt wird wäre es hilfreich wenn jemand so nett wäre und dazu noch einige rekärungen posten würde,
und vielleicht gleichzeitig an diesem beispiel erklären würde


        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Di 28.07.2009
Autor: Marcel

Hallo Wolfram,

> [mm]\summe_{i=1}^{\infty} \bruch{3n \wurzel[6]{5n^{2}+3}}{(n+1)^{2} \wurzel[3]{4n^{2}+2n-1}}[/mm]
>  
> ich würde gerne wissen wie man diese folge abschätz,

das ist keine Folge, sondern eine Reihe (was natürlich auch eine Folge ist, nämlich die Folge ihrer Teilsummen).

>  da mir das nicht ganz einleuchtet wie abgeschätzt wird
> wäre es hilfreich wenn jemand so nett wäre und dazu noch
> einige rekärungen posten würde,
>  und vielleicht gleichzeitig an diesem beispiel erklären
> würde

Naja, ich hoffe, es geht hier nur um das Konvergenzverhalten der Reihe. Die Reihe konvergiert, wenn Du (ab einem gewissen [mm] $N\,$) [/mm] eine konvergente Majorante angeben kannst (analog: Sie divergiert bei Angabe einer entsprechenden Minorante).

Wie kann man nun "ein Gefühl" für diese Reihe bekommen?    
Wir schauen uns die Summanden an:
[mm] $$\bruch{3n \wurzel[6]{5n^{2}+3}}{(n+1)^{2} \wurzel[3]{4n^{2}+2n-1}}\,.$$ [/mm]
Sie sind alle [mm] $\ge 0,\,$ [/mm] und wir sehen, dass im Zähler "im Wesentlichen" so etwas wie [mm] "$n*n^{2/6}=n^{4/3}$" [/mm] steht, und im Nenner [mm] "$n^2*n^{2/3}=n^{8/3}$", [/mm] die Summanden sich also, wenn $n [mm] \to \infty$ [/mm]  strebt, sich wie [mm] $\text{const}*\frac{n^{4/3}}{n^{8/3}}=\frac{1}{n^{4/3}}$ [/mm] verhalten. Also versuchen wir, eine entsprechende konvergente Majorante zu bauen:
Dazu benutze z.B., dass für jedes $n [mm] \in \IN$ [/mm] gilt:
[mm] $$\bruch{3n \wurzel[6]{5n^{2}+3}}{(n+1)^{2} \wurzel[3]{4n^{2}+2n-1}}\le \bruch{3n \wurzel[6]{5n^{2}+3n^2}}{(n+1)^{2} \wurzel[3]{4n^{2}+2n-1}}\le \bruch{3*\wurzel[6]{8}\;n \wurzel[6]{n^{2}}}{n^{2} \wurzel[3]{4n^{2}}}=\frac{3*\wurzel[6]{8}}{\wurzel[3]{4}}*\frac{\wurzel[6]{n^2}}{n*\wurzel[3]{n^2}}=\frac{3*\wurzel[6]{8}}{\wurzel[3]{4}}*\frac{\wurzel[6]{n^2}}{n*\wurzel[6]{n^4}}=\frac{3*\wurzel[6]{8}}{\wurzel[3]{4}}*\frac{1}{n^{4/3}}\,.$$ [/mm]

Natürlich sollte hier die Kenntnis vorhanden sein, dass [mm] $\sum_{n=1}^\infty \frac{1}{n^\alpha}$ [/mm] (genau dann) konvergiert, wenn [mm] $\alpha [/mm] > 1$ ist. (Das folgt z.B. aus dem Cauchyschen Verdichtungssatz.)

Gruß,
Marcel

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Di 28.07.2009
Autor: Wolfram

erstmal herztlichen dank für deine antwort

nach welchem prinzip oder (algorithmus) gehst du vor gibts da sowas wie ne faustregel was man nun aus den exponenten macht, wie die vorfaktoren betrachtet werden?

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Di 28.07.2009
Autor: angela.h.b.


> nach welchem prinzip oder (algorithmus) gehst du vor

Hallo,

so ganz verstehe ich die Frage nicht, denn Marcel hat Dir sehr ausführlich die Gedanken geschildert, die er sich gemacht hat, bevor er wirklich mit der Abschätzung begonnen hat: er hat sich überlegt, daß für [mm] n\to \infty [/mm] der Summand 3 in [mm] 5n^2+3 [/mm] "nahezu unbedeutend" wird, und sich der Ausdruck [mm] 5n^2 [/mm] "ähnlich wie" [mm] n^2 [/mm] verhält.
Die anderen Ausdrücke entsprechend.

Danach hat er (das Ziel fest im Blick) passende Abschätzungen vorgenommen und dann eine Majorante gesucht.

Hier steuert man oft auf [mm] \summe\bruch{1}{n^{\alpha}}, [/mm] auf die geometrische Reihe oder (für Minoranten) die harmonische Reihe zu.

> gibts
> da sowas wie ne faustregel was man nun aus den exponenten
> macht, wie die vorfaktoren betrachtet werden?

Einen Algorithmus, der immer und bei jeder Reihe funktioniert, wirst Du nicht finden.
Am besten lernt man's durch fleißiges Üben.

Gruß v. Angela

P.S.: beachte, daß es in Marcels Antwort heißen muß ..."die Summanden sich also, wenn $ n [mm] \to \infty [/mm] $  strebt, sich wie $ [mm] \text{const}\cdot{}\frac{n^{\red{4/3}}}{n^{\red{8/3}}}=n^{\red{-}4/3} [/mm] $ verhalten"



Bezug
                                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 Di 28.07.2009
Autor: Marcel

Hallo Angela,

> P.S.: beachte, daß es in Marcels Antwort heißen muß
> ..."die Summanden sich also, wenn [mm]n \to \infty[/mm]  strebt,
> sich wie
> [mm]\text{const}\cdot{}\frac{n^{\red{4/3}}}{n^{\red{8/3}}}=n^{\red{-}4/3}[/mm]
> verhalten"

danke auch hier nochmals für den Hinweis. Ich habe es editiert.

Gruß,
Marcel

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:40 Di 28.07.2009
Autor: Marcel

Hallo,

> erstmal herztlichen dank für deine antwort
>  
> nach welchem prinzip oder (algorithmus) gehst du vor gibts
> da sowas wie ne faustregel was man nun aus den exponenten
> macht, wie die vorfaktoren betrachtet werden?

wenn Du so willst, kann man sagen:
Ich habe untersucht, ob es möglich ist, dass Konvergenzverhalten der Reihe [mm] $\sum_{n=1}^\infty a_n$ [/mm] mithilfe des sogenannten Grenzwertkriteriums  ([]Satz 33.6 im Heuser, Analysis I) herauszubekommen. Die Vorgehensweise ist jedenfalls zu diesem Kriterium (bzw. zum Beweis dazu) i.W. analog.
(Ist Dir klar, wie man hier, würde man dieses Kriterium benutzen wollen, die Folge [mm] $(b_n)_n$ [/mm] wählen könnte?)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]