matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:21 Di 12.04.2011
Autor: monstre123

Aufgabe
Für jedes [mm] n\in\IN [/mm] sei die Funktion [mm] f_{n}:\IR\to\IR [/mm] mit [mm] D(f_{n})= [0,\infty) [/mm] und  [mm] f_{n}(x)=\bruch{e^{-nx}}{n^{2}}. [/mm]

a) Zeigen Sie, daß die Funktionenreihe [mm] \summe_{n=1}^{\infty} [/mm] auf [mm] [0,\infty) [/mm] punktweise und gleichm¨aßig konvergiert.

Hallo,

für punktweise Konvergenz: [mm] f(x)=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}f_{n}(x)=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{e^{-nx}}{n^{2}}=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{1}{n^{2}}*\bruch{1}{e^{nx}}=0 [/mm]

--> punktweise konvergent auf [mm] I=[0,\infty) [/mm]


Gleichmäßige Konvergenz: [mm] |f_{n}(x)-f(x)| \le a_{n} [/mm]

[mm] |\bruch{e^{-nx}}{n^{2}}-0| \le a_{n} [/mm]

[mm] |\bruch{e^{-nx}}{n^{2}}| \le \bruch{1}{n^{2}} [/mm] = [mm] a_{n} [/mm]

Und damit ist die Folge gleichmäßige konvergent.

Korrekt?

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Di 12.04.2011
Autor: fred97


> Für jedes [mm]n\in\IN[/mm] sei die Funktion [mm]f_{n}:\IR\to\IR[/mm] mit
> [mm]D(f_{n})= [0,\infty)[/mm] und  [mm]f_{n}(x)=\bruch{e^{-nx}}{n^{2}}.[/mm]
>  
> a) Zeigen Sie, daß die Funktionenreihe
> [mm]\summe_{n=1}^{\infty}[/mm] auf [mm][0,\infty)[/mm] punktweise und
> gleichm¨aßig konvergiert.
>  Hallo,
>  
> für punktweise Konvergenz:
> [mm]f(x)=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}f_{n}(x)=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{e^{-nx}}{n^{2}}=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{1}{n^{2}}*\bruch{1}{e^{nx}}=0[/mm]

Das ist totaler Unfug:

   [mm] \limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{1}{n^{2}}*\bruch{1}{e^{nx}} [/mm]

           [mm] \limes_{n\rightarrow\infty} [/mm]  vor [mm] \summe_{n=1}^{\infty} [/mm]

was soll das denn sein ????
Du weißt offensichtlich nicht, was eine Funktionenreihe ist und was Konvergenz, etc ... solcher Reihen bedeutet.


Also mach Dich schlau.

Tipp für die Aufgabe: Majorantenkriterium von Weierstraß.

         []http://de.wikipedia.org/wiki/Weierstraßscher_M-Test


FRED

>  
> --> punktweise konvergent auf [mm]I=[0,\infty)[/mm]
>  
>
> Gleichmäßige Konvergenz: [mm]|f_{n}(x)-f(x)| \le a_{n}[/mm]
>  
> [mm]|\bruch{e^{-nx}}{n^{2}}-0| \le a_{n}[/mm]
>  
> [mm]|\bruch{e^{-nx}}{n^{2}}| \le \bruch{1}{n^{2}}[/mm] = [mm]a_{n}[/mm]
>  
> Und damit ist die Folge gleichmäßige konvergent.
>  
> Korrekt?


Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Di 12.04.2011
Autor: monstre123


> > Für jedes [mm]n\in\IN[/mm] sei die Funktion [mm]f_{n}:\IR\to\IR[/mm] mit
> > [mm]D(f_{n})= [0,\infty)[/mm] und  [mm]f_{n}(x)=\bruch{e^{-nx}}{n^{2}}.[/mm]
>  >  
> > a) Zeigen Sie, daß die Funktionenreihe
> > [mm]\summe_{n=1}^{\infty}[/mm] auf [mm][0,\infty)[/mm] punktweise und
> > gleichm¨aßig konvergiert.
>  >  Hallo,
>  >  
> > für punktweise Konvergenz:
> >
> [mm]f(x)=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}f_{n}(x)=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{e^{-nx}}{n^{2}}=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{1}{n^{2}}*\bruch{1}{e^{nx}}=0[/mm]
>  
> Das ist totaler Unfug:
>
> [mm]\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{1}{n^{2}}*\bruch{1}{e^{nx}}[/mm]
>  
> [mm]\limes_{n\rightarrow\infty}[/mm]  vor [mm]\summe_{n=1}^{\infty}[/mm]
>  


[mm] f(x)=\summe_{n=1}^{\infty}\limes_{n\rightarrow\infty}f_{n}(x)=\summe_{n=1}^{\infty}\limes_{n\rightarrow\infty}\bruch{e^{-nx}}{n^{2}}=\summe_{n=1}^{\infty}\limes_{n\rightarrow\infty}\bruch{1}{n^{2}}*\bruch{1}{e^{nx}}=0 [/mm]

So jetzt aber. Korrekt oder meintest du, dass der Ansatz falsch ist?



> was soll das denn sein ????
>   Du weißt offensichtlich nicht, was eine Funktionenreihe
> ist und was Konvergenz, etc ... solcher Reihen bedeutet.
>  
>
> Also mach Dich schlau.
>  
> Tipp für die Aufgabe: Majorantenkriterium von
> Weierstraß.
>  
> [mm]http://de.wikipedia.org/wiki/Weierstraßscher_M-Test[/mm]
>  
>
> FRED
>  >  
> > --> punktweise konvergent auf [mm]I=[0,\infty)[/mm]
>  >  
> >
> > Gleichmäßige Konvergenz: [mm]|f_{n}(x)-f(x)| \le a_{n}[/mm]
>  >  
> > [mm]|\bruch{e^{-nx}}{n^{2}}-0| \le a_{n}[/mm]
>  >  
> > [mm]|\bruch{e^{-nx}}{n^{2}}| \le \bruch{1}{n^{2}}[/mm] = [mm]a_{n}[/mm]
>  >  
> > Und damit ist die Folge gleichmäßige konvergent.
>  >  
> > Korrekt?
>  


Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Di 12.04.2011
Autor: fred97


> > > Für jedes [mm]n\in\IN[/mm] sei die Funktion [mm]f_{n}:\IR\to\IR[/mm] mit
> > > [mm]D(f_{n})= [0,\infty)[/mm] und  [mm]f_{n}(x)=\bruch{e^{-nx}}{n^{2}}.[/mm]
>  >  >  
> > > a) Zeigen Sie, daß die Funktionenreihe
> > > [mm]\summe_{n=1}^{\infty}[/mm] auf [mm][0,\infty)[/mm] punktweise und
> > > gleichm¨aßig konvergiert.
>  >  >  Hallo,
>  >  >  
> > > für punktweise Konvergenz:
> > >
> >
> [mm]f(x)=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}f_{n}(x)=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{e^{-nx}}{n^{2}}=\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{1}{n^{2}}*\bruch{1}{e^{nx}}=0[/mm]
>  >  
> > Das ist totaler Unfug:
> >
> >
> [mm]\limes_{n\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{1}{n^{2}}*\bruch{1}{e^{nx}}[/mm]
>  >  
> > [mm]\limes_{n\rightarrow\infty}[/mm]  vor [mm]\summe_{n=1}^{\infty}[/mm]
>  >  
>
>
> [mm]f(x)=\summe_{n=1}^{\infty}\limes_{n\rightarrow\infty}f_{n}(x)=\summe_{n=1}^{\infty}\limes_{n\rightarrow\infty}\bruch{e^{-nx}}{n^{2}}=\summe_{n=1}^{\infty}\limes_{n\rightarrow\infty}\bruch{1}{n^{2}}*\bruch{1}{e^{nx}}=0[/mm]
>  
> So jetzt aber. Korrekt

Nein.


>  oder meintest du, dass der Ansatz
> falsch ist?

Ja, er ist völlig unsinnig.

Bei einer Funktionenreihe [mm] \sum f_n [/mm] betrachtet man die Funktionenfolge [mm] (s_n), [/mm] wobei

                [mm] s_n(x) [/mm] = [mm] \summe_{i=1}^{n}f_i(x) [/mm]


FRED

>  
>
>
> > was soll das denn sein ????
>  >   Du weißt offensichtlich nicht, was eine
> Funktionenreihe
> > ist und was Konvergenz, etc ... solcher Reihen bedeutet.
>  >  
> >
> > Also mach Dich schlau.
>  >  
> > Tipp für die Aufgabe: Majorantenkriterium von
> > Weierstraß.
>  >  
> > [mm]http://de.wikipedia.org/wiki/Weierstraßscher_M-Test[/mm]
>  >  
> >
> > FRED
>  >  >  
> > > --> punktweise konvergent auf [mm]I=[0,\infty)[/mm]
>  >  >  
> > >
> > > Gleichmäßige Konvergenz: [mm]|f_{n}(x)-f(x)| \le a_{n}[/mm]
>  >

>  >  
> > > [mm]|\bruch{e^{-nx}}{n^{2}}-0| \le a_{n}[/mm]
>  >  >  
> > > [mm]|\bruch{e^{-nx}}{n^{2}}| \le \bruch{1}{n^{2}}[/mm] = [mm]a_{n}[/mm]
>  >  >  
> > > Und damit ist die Folge gleichmäßige konvergent.
>  >  >  
> > > Korrekt?
> >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]