matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:53 Mi 12.10.2005
Autor: Farnsy

Hallo,
mit welchem Verfahren kann ich die Konvergenz von
[mm] \wurzel{n} * (\wurzel{n+1} - \wurzel{n}) [/mm]
zeigen?


Ich bin da gerade irgendwie ideenlos... ich hätte gedacht, dass 0 die richtige Lösung ist, aber anscheinend ist es 0,5.
Für nen Denkanstoß wäre ich dankbar :)

        
Bezug
Konvergenz: Erweitern ...
Status: (Antwort) fertig Status 
Datum: 17:11 Mi 12.10.2005
Autor: Roadrunner

Hallo Farnsy!


Erweitere doch hier mal mit dem Term [mm] $\wurzel{n+1} [/mm] \ [mm] \red{+} [/mm] \ [mm] \wurzel{n}$ [/mm] (Stichwort: 3. binomische Formel) und klammere anschließend im Nenner [mm] $\wurzel{n}$ [/mm] aus ...


Der Grenzwert für $n [mm] \rightarrow \infty$ [/mm] lautet dann wirklich [mm] $\bruch{1}{2}$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Mi 12.10.2005
Autor: Farnsy

Danke :-)

Also haben wir [mm] \bruch{\wurzel{n}}{\wurzel{n}(1+0+1)} [/mm]
wenn man n gegen unentlich gehen lässt. dann einfach die Wurzel kürzen. ok

Aber wie erkennt man, dass es so geht?
Ist das einfach Intuition? Oder gibt es da ein Merkmal auf das man achten kann.

Grüße
Farnsy

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:34 Mi 12.10.2005
Autor: SEcki


> Aber wie erkennt man, dass es so geht?
>  Ist das einfach Intuition?

Und Übung, Praxis, inspiration, oder: so einen Typus schonmal gesehen haben.

> Oder gibt es da ein Merkmal auf
> das man achten kann.

Wenn man mal so eine Aufgabe gemacht hat, "sieht" man das bei so einer, das es klappen könnte - wie beim Integrieren, ob man Substituitonsformel und/oder partielle Integration anwendet.

SEcki

Bezug
                        
Bezug
Konvergenz: Genauer!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Mi 12.10.2005
Autor: Roadrunner

Hallo Farnsy!


Das hast Du aber etwas ungenau aufgeschrieben:

[mm] $\wurzel{n}*\left( \ \wurzel{n+1} - \wurzel{n} \ \right) [/mm] \ = \ [mm] \bruch{1}{\wurzel{1+\bruch{1}{n}} + 1} \longrightarrow [/mm] \ [mm] \bruch{1}{\wurzel{1+0}+1} [/mm] \ = \ [mm] \bruch{1}{1+1} [/mm] \ = \ [mm] \bruch{1}{2}$ [/mm]


Noch mal zur Methode ...

Diese Summen oder Differenzen von Wurzelausdrücken lassen sich schon des öfteren mit der 3. binomischen Formel "knacken". Dnn muss man halt den Term entsprechend erweitern ...


Sonst wie SEcki bereits sagte: Übung, Übung, Übung!


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]