matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz Folgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Konvergenz Folgen
Konvergenz Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Folgen: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 13:51 Sa 07.11.2009
Autor: aly19

Aufgabe
Bestimmen Sie falls möglich, den Grenzwert von:
[mm] (a_n)_{n\in\IN} [/mm] mit [mm] a_n=(-\bruch{1}{2})^{n}(2+3/n) [/mm]

Also der erste Faktor divergiert ja, aber der zweite konvergiert ja gegen 2. Wenn man einen divergierenden und einen konvergierenden Faktor hat, kann man dann einfach sagen die Folge divergiert, wegen [mm] (-1)^{n}?? [/mm]
Oder ist das nicht immer so?
Vielen Dank schonmal.

        
Bezug
Konvergenz Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 Sa 07.11.2009
Autor: schachuzipus

Hallo aly19,

> Bestimmen Sie falls möglich, den Grenzwert von:
>  [mm](a_n)_{n\in\IN}[/mm] mit [mm]a_n=(-\bruch{1}{2})^{n}(2+3/n)[/mm]

>  
> Also der erste Faktor divergiert ja, [notok]

Das ist doch von der Form [mm] $q^n$ [/mm] mit [mm] $|q|=\frac{1}{2}<1$, [/mm] das konvergiert doch gegen 0!

> aber der zweite
> konvergiert ja gegen 2.[ok] Wenn man einen divergierenden und
> einen konvergierenden Faktor hat, kann man dann einfach
> sagen die Folge divergiert, wegen [mm](-1)^{n}??[/mm]
> Oder ist das nicht immer so?

Nein, es ist nicht zwingend divergente Folge [mm] \cdot{} [/mm] konvergente Folge = divergente Folge.

Nimm [mm] $a_n=(-1)^n, b_n=1/n$, [/mm] das Produkt konvergiert gegen 0

>  Vielen Dank schonmal.  

Hier hast du zwei konvergente Folgen, eine konvergiert gegen 0, die andere gegen 2, deren Produkt gem. GW-Sätzen also gegen [mm] $0\cdot{}2=0$ [/mm]


Gruß

schachuzipus

Bezug
                
Bezug
Konvergenz Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:09 Sa 07.11.2009
Autor: aly19

Hey danke, hab das gar nicht gesehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]