matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz Potenzreihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz Potenzreihen
Konvergenz Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Potenzreihen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:43 Sa 15.07.2006
Autor: nathenatiker

Aufgabe 1
Für welche x [mm] \in \IR [/mm] konvergiert die Potenzreihe [mm] \summe_{n=1}^{ \infty} \bruch{1}{ \wurzel{2n}} (x-2)^{n} [/mm] ?

Aufgabe 2
Für welche x [mm] \in \IC [/mm] konvergiert die Potenzreihe [mm] \summe_{n=0}^{ \infty} \bruch{e^{n}}{ n^{2}-i} (x-3+4*i)^{n} [/mm] ?

Hallo,

also, zu Aufgabe 1)
Da habe zuerst den Konvergenzradius berechnet und habe R = 1, da

R =  [mm] \limes_{n\rightarrow\infty} \bruch{c_{n}}{c_{n+1}} [/mm]
[mm] =\limes_{n\rightarrow\infty} \bruch{\wurzel{2n}}{\wurzel{2n+1}} [/mm] =1.

Dann ist das Konvergenzintervall (1,3).
Nach Untersuchung der Intervallgrenzen gilt, die Reihe konvergiert für 1 und divergiert für 3, also konvergiert die Reihe für x [mm] \varepsilon [/mm] [1,3).
Kann man das so machen bzw ist das so richtig??

Bei Aufgabe 2 bin ich zu keiner Lösung gekommen. ich habe versucht , den Konvergenzradius zu berechen, bin da aber gescheitert.
kann mir da jemand einen Tipp geben????

MFG

nathenatiker

        
Bezug
Konvergenz Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 So 16.07.2006
Autor: mushroom

Hallo,

zu 1) die Ergebnisse habe ich auch raus, jedoch ist dir ein Fehler beim Berechnen des Konvergenzradius unterlaufen:

$R = [mm] \lim_{n\to\infty}\left| \frac{c_n}{c_{n+1}} \right| [/mm] = [mm] \lim_{n\to\infty}\left| \frac{\frac{1}{\sqrt{2n}}}{\frac{1}{\sqrt{2(n+1)}}} \right| [/mm] = [mm] \lim_{n\to\infty}\left| \frac{\sqrt{2n+2}}{\sqrt{2n}} \right| [/mm] = [mm] \lim_{n\to\infty}\left| \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{n+1}}{\sqrt{n}} \right| [/mm] = [mm] \lim_{n\to\infty}\left| \sqrt{1+\frac{1}{n}} \right| [/mm] = 1$.

zu 2) habe ich mir noch nicht angeschaut.

Gruß
Markus

Bezug
                
Bezug
Konvergenz Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Mo 17.07.2006
Autor: Sandeu

warum divergiert die Reihe für x=3???

Ich komme immer auf Konvergenz!

Bezug
                        
Bezug
Konvergenz Potenzreihen: Wert x=3 einsetzen
Status: (Antwort) fertig Status 
Datum: 16:42 Mo 17.07.2006
Autor: Roadrunner

Hallo Sandeu!


Hast Du mal den Wert $x \ = \ 3$ eingesetzt und die entsprechende Reihe [mm] $\summe_{n=1}^{\infty}\bruch{1}{\wurzel{2n}}*(3-2)^n [/mm] \ = \ [mm] \summe_{n=1}^{\infty}\bruch{1}{\wurzel{2n}}*1 [/mm] \ = \ [mm] \bruch{1}{\wurzel{2}}*\summe_{n=1}^{\infty}\bruch{1}{n^{\bruch{1}{2}}}$ [/mm] untersucht?

Diese divergiert nämlich nach dem Minorantenkriterium, wenn Du gegen die harmonische Reihe [mm] $\summe_{n=1}^{\infty}\bruch{1}{n}$ [/mm] abschätzt.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Konvergenz Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Mo 17.07.2006
Autor: Sandeu

Soweit ist alles klar, nur leider darf ich das Minorantenkriterium nicht verwenden, da es in der VL noch nicht angesprochen wurde.
Geht das nicht noch irgendwie anders?

Bezug
                                        
Bezug
Konvergenz Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Mo 17.07.2006
Autor: nathenatiker

Hallo,

wir hatten in der Vorlesung das Majorantenkriterium, und somit auch das minorantenkriterium(wenn ich mich genau erinnere wurde es sogar im Tutorium behandelt). du kannste es also ohne Probleme benutzen.

nathenatiker

Bezug
                                                
Bezug
Konvergenz Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 Mo 17.07.2006
Autor: Sandeu

Ach echt, danke...

Hätte vielleicht doch mal in mein Tutorium gehen sollen...

Na dann viel Glück bei der Klausur...

Bezug
        
Bezug
Konvergenz Potenzreihen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:17 So 16.07.2006
Autor: nathenatiker

Hallo,

danke für den Hinweis zu Aufgabe 1.

ich hatte einen Fehler in der Aufgabenstellung zu Aufgabe 2). habe ihn jetzt korrigiert.
Als Konvergenzradius habe ich [mm] \bruch{1}{e}. [/mm] Aber jetzt habe ich ein Problem bei der Bestimmung des Konvergenzintervalls.
Ich bekomme als Intervall [mm] (-\bruch{1}{e}-3-4i,\bruch{1}{e}+3+4i) [/mm] raus.
irgendwie komme ich damit nicht weiter, kann mir jemand helfen?

MFG

Nathenatiker

Bezug
                
Bezug
Konvergenz Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 So 16.07.2006
Autor: nathenatiker

Hallo,

habe jetzt raus, dass die Reihe für konvergiert für
3-4i- [mm] \bruch{1}{e} \lex \le3-4i+ \bruch{1}{e}. [/mm]

ich bin mir nicht 100%sicher, denke aber das das ergebnis richtig sein müsste.

mfg

Natehnatiker

Bezug
                        
Bezug
Konvergenz Potenzreihen: Aufgabe 2
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:43 Mo 17.07.2006
Autor: tausi

Hallo!

zur Aufgabe 2:
Wenn man hier alle komplexen Zahlen sucht, für die die Potenzreihe konvergiert, erhält man ja wirklich einen Kreis und kein Intervall, denn Intervalle gibt es ja bei den komplexen Zahlen nicht...

Es muss also, wenn der Konvergenzradius stimmt (ich habe nicht nachgerechnet), der Kreis mit Radius 1/e um den Punkt 3-4i Lösung sein.

Tausi

Bezug
                
Bezug
Konvergenz Potenzreihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 18.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]