matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNumerik linearer GleichungssystemeKonvergenz Splitting-Verfahren
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Numerik linearer Gleichungssysteme" - Konvergenz Splitting-Verfahren
Konvergenz Splitting-Verfahren < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Splitting-Verfahren: Idee
Status: (Frage) beantwortet Status 
Datum: 22:54 Mo 20.10.2014
Autor: Karl87

Hallo,

habe eine Frage bzgl der Konvergenz von Splitting-Verfahren.

Ein Splitting-Verfahren ist ja genau dann konvergent, wenn der Spektralradius der Iterationsmatrix kleiner 1 ist (p(M)<1). Mir ist klar, der Spektralradius ist der betragsmäßig größte Eigenwert der Iterationsmatrix.

Habe nun gelesen, dass die Eigenwerte oft schwierig zu berechnen sind.

Jetzt meine Frage: Gibt es noch andere Möglichkeiten Konvergenzaussagen zu treffen?

Die angepassten Konvergenzaussagen (Zeilen-/Spalten-&Quadratsummenkriterium) mal kurz vernachlässigt.

Würde mich über eine Antwort freuen.
vG
Karl

        
Bezug
Konvergenz Splitting-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 02:39 Di 21.10.2014
Autor: DieAcht

Hallo Karl,


> Ein Splitting-Verfahren ist ja genau dann konvergent, wenn
> der Spektralradius der Iterationsmatrix kleiner 1 ist
> (p(M)<1). Mir ist klar, der Spektralradius ist der
> betragsmäßig größte Eigenwert der Iterationsmatrix.

Ja, wobei die Matrix [mm] $M\$ [/mm] quadratisch sein muss!

> Habe nun gelesen, dass die Eigenwerte oft schwierig zu
> berechnen sind.

Richtig.

> Jetzt meine Frage: Gibt es noch andere Möglichkeiten
> Konvergenzaussagen zu treffen?

Sei [mm] $M\$ [/mm] eine quadratische Matrix, dann sind folgende Aussagen äquivalent:

1) Der Spektralradius [mm] $r(M)\$ [/mm] von [mm] $M\$ [/mm] ist kleiner als [mm] $1\$. [/mm]
2) [mm] $M^k\to [/mm] 0$ für [mm] k\to\infty. [/mm]
3) Es gibt eine Vektornorm, sodass sich für induzierte Matrixnorm [mm] \|M\|<1 [/mm] ergibt.
4) [mm] $M-\lambda [/mm] E$ ist für alle [mm] \lambda [/mm] mit [mm] $|\lambda|\ge [/mm] 1$ regulär.

Kannst du mal probieren zu beweisen. ;-)


Gruß
DieAcht

Bezug
                
Bezug
Konvergenz Splitting-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:45 Mi 22.10.2014
Autor: Karl87

Ein Kommilitone hat gemeint, es ist auch möglich Konvergenzaussagen über eine Abschätzung der Matrix zu treffen, vorausgesetzt ist nur, dass die Matrix hermitesch ist. Der From: Spektralradius p(M) [mm] \le [/mm] ||A||

Gibt es einen solchen Ansatz?

Bezug
                        
Bezug
Konvergenz Splitting-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:17 Mi 22.10.2014
Autor: fred97


> Ein Kommilitone hat gemeint, es ist auch möglich
> Konvergenzaussagen über eine Abschätzung der Matrix zu
> treffen, vorausgesetzt ist nur, dass die Matrix hermitesch
> ist. Der From: Spektralradius p(M) [mm]\le[/mm] ||A||

Du meinst sicher $p(M) [mm] \le [/mm] ||M||$

>  
> Gibt es einen solchen Ansatz?  

Im Folgenden sei stets [mm] \IK [/mm] = [mm] \IR [/mm] oder = [mm] \IC. [/mm]

Ist $||*||$ eine Norm auf [mm] \IK^n, [/mm] so induziert diese Norm eine Norm auf [mm] \IK^{n \times n}: [/mm]

   $||A||:= [mm] \max \{||Ax||: x \in \IK^n, ||x||=1 \}$. [/mm]

Ist $A [mm] \in \IK^{n \times n}$, [/mm] so besteht folgender Zusammenhang zwischen dem Spektralradius und der Norm:

    [mm] $p(A)=\limes_{n\rightarrow\infty}||A^n||^{1/n}$. [/mm]

Ist  [mm] \IK^{n \times n} [/mm] mit der euklidischen Norm [mm] ||*||_2 [/mm] ausgestattet, dann ist die von [mm] ||*||_2 [/mm] induzierte Matrixnorm gegeben durch

    [mm] $||A||_2:= \max \{||Ax||_2: x \in \IK^n, ||x||_2=1 \}$. [/mm]

Für eine hemitesche Matrix $A$ gilt dann:

      [mm] $p(A)=||A||_2$ [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]