matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Konvergenz einer Folge
Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Blockade beim Grenzwert
Status: (Frage) beantwortet Status 
Datum: 10:50 Do 08.03.2007
Autor: Daox

Aufgabe
Man zeige die Konvergenz der Folge
[mm] a_n [/mm] = [mm] \bruch{1}{n+1} [/mm] + [mm] \bruch{1}{n+2} [/mm] + ... + [mm] \bruch{1}{2n} [/mm] = [mm] \summe_{i=1}^{n} \bruch{1}{n+i} [/mm]

Hallo!
Ich schätze zuerst müsste man die Monotonie nachweisen: [mm] x_n [/mm] + [mm] \bruch{1}{2n - 1} [/mm] < [mm] x_n [/mm] + [mm] \bruch{1}{2n - 1} [/mm] + [mm] \bruch{1}{2n} [/mm] => 0 < [mm] \bruch{1}{2n} [/mm] => also monoton steigend.
Aber nun habe ich Probleme die Grenze zu finden, um die Beschränktheit nachzuweisen. Ein Grenzwert dieser Summe ist mir nicht bekannt und als rekursive Folge umgeschrieben komme ich auch nciht weiter.

        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Do 08.03.2007
Autor: Hugo_Sanchez-Vicario

Hallo Daox,

das mit der Monotonie hast du falsch verstanden. Da kommt es auf den Einluss von n an, d.h. wenn ich stattdessen (n+1) verwende.

Was passiert denn mit dem Summenwert, wenn du statt von [mm] \frac{1}{n+1} [/mm] bis [mm] \frac{1}{2n} [/mm] jetzt ueber [mm] \frac{1}{n+2} [/mm] bis [mm] \frac{1}{2n+2} [/mm] summierst. Wird die Summe dann groesser, kleiner oder bleibt sie fuer jedes n immer gleich?

Du solltest rausbekommen, dass die Summe monoton waechst. (Du hattest zwar das gleiche schon gesagt, aber deine Argumentation war nicht in Ordnung.)

Jetzt musst du noch zeigen, dass die Summe nach oben beschraenkt ist, z.B. durch die Zahl 42 (oder irgendeine andere Zahl).

Hugo

Bezug
                
Bezug
Konvergenz einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Do 08.03.2007
Autor: Daox

Vielen Dank für die schnelle Antwort.
Man würde also einfach einen Grenzwert suchen, und mit Inkduktion zeigen, dass dieser nicht überschritten wird?

also: Induktionsverankerung: n=1: 0.5 [mm] \le [/mm] 42
Induktionsannahme [mm] a_n \le [/mm] 42
Induktionsschluss: [mm] a_n_+_1 [/mm] =
hmm, ich glaube da ist wieder ein Denkfehler

Bezug
                        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Do 08.03.2007
Autor: ullim

Hi,

Deine Folge lautet ja

[mm] a_n=\summe_{i=1}^{n} \bruch{1}{n+i} [/mm]

Es gilt

[mm] \bruch{1}{n+i}\le\bruch{1}{n+1} [/mm] für jedes [mm] i\ge1 [/mm]

es kommen n Terme in Deiner Summe vor, also gilt

[mm] a_n=\summe_{i=1}^{n} \bruch{1}{n+i}\le\bruch{n}{n+1}<1 [/mm]

also ist die Folge beschränkt.

Monotonie musst Du noch selbst nachweisen, aber dann besitzt die Folge einen Grenzwert.

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]