matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Di 15.05.2007
Autor: Leader

Aufgabe
Untersuche folgende Reihe auf Konvergenz:

[mm] \summe_{n=0}^{n} (-1)^n \bruch{2n + 1}{n ( n+1)} [/mm]  

Hallo.


Die obige Aufgabe bereitet mir schon seit einigen Tagen Kopfzerbrechen. Weder das Wurzelkriterium, noch das Quotientenkriterium halfen (es kam immer 1 heraus). Dennoch strebt die Folge an sich gegen 0, das heißt, die Reihe könnte durchaus konvergieren.

Hat jemand eine Idee, wie man die Reihe auf Konvergenz überprüfen kann? Mehr als Quotienten- und Wurzelkriterium sind mir nicht bekannt.


Grüße,
Leader.

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Di 15.05.2007
Autor: schachuzipus

Hallo leader,

das ist ja ne alternierende Reihe, und für die gibt's das Leibnizkriterium:

Sei [mm] $\sum\limits_{n=0}^{\infty}(-1)^na_n$ [/mm] eine Reihe, so ist sie konvergent, falls

Die Folge [mm] $(a_n)_n$ [/mm] der Reihenglieder eine MONOTON FALLENDE NULLFOLGE ist, wobei [mm] $a_n\ge [/mm] 0$ [mm] $\forall n\in\IN$ [/mm] sein muss

Du hast schon erkannt, dass es eine NF ist, bleibt noch, eine Bemerkung zur Monotonie zu machen


Gruß

schachuzipus

Bezug
                
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Di 15.05.2007
Autor: Leader

Vielen Dank, hab mal wieder was dazu gelernt ;)


Grüße,
Leader.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]