matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:41 Do 30.10.2008
Autor: Interceptor

Aufgabe
[mm] \summe_{i=1}^{\infty}\bruch{1}{(4\*k^{2}-1)} [/mm]

Hallo,

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich habe ein Problem mit der Grenzwertbestimmung von Aufgaben im obigen Stil.

Wie muss man bei der Grenzwertbestimmung vorgehen? Ich habe an diesem Beispiel die Klammer unten schon zerlegt in (2*k-1)*(2*k+1) und dann das Quotientenkriterium angewandt, leider kommt dabei 1 heraus womit es nicht anwendbar ist. Wurzelkriterium wüsste ich gar nicht, wie es anzuwenden wäre.

Welche Möglichkeiten gibt es sonst noch?

Gruß

Interceptor

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Do 30.10.2008
Autor: fred97


> [mm]\summe_{i=1}^{\infty}\bruch{1}{(4\*k^{2}-1)}[/mm]
>  Hallo,
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> ich habe ein Problem mit der Grenzwertbestimmung von
> Aufgaben im obigen Stil.
>  
> Wie muss man bei der Grenzwertbestimmung vorgehen? Ich habe
> an diesem Beispiel die Klammer unten schon zerlegt in
> (2*k-1)*(2*k+1) und dann das Quotientenkriterium angewandt,
> leider kommt dabei 1 heraus womit es nicht anwendbar ist.
> Wurzelkriterium wüsste ich gar nicht, wie es anzuwenden
> wäre.
>  
> Welche Möglichkeiten gibt es sonst noch?

Es gilt:      [mm] \bruch{1}{4k^2-1} \le \bruch{1}{k^2} [/mm] für jedes k [mm] \in \IN. [/mm]

Jetzt Majorantenkriterium

FRED


>  
> Gruß
>  
> Interceptor


Bezug
        
Bezug
Konvergenz einer Reihe: Alternative
Status: (Antwort) fertig Status 
Datum: 14:09 Do 30.10.2008
Autor: Marcel

Hallo,

> [mm]\summe_{i=1}^{\infty}\bruch{1}{(4\*k^{2}-1)}[/mm]

Achtung: Laufindex dann bitte auch einheitlich [mm] $\blue{k}$ [/mm] nennen. Unter dem Summenzeichen hast Du ein [mm] $\black{i}\$ [/mm] stehen.

>  Hallo,
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> ich habe ein Problem mit der Grenzwertbestimmung von
> Aufgaben im obigen Stil.
>  
> Wie muss man bei der Grenzwertbestimmung vorgehen? Ich habe
> an diesem Beispiel die Klammer unten schon zerlegt in
> (2*k-1)*(2*k+1) und dann das Quotientenkriterium angewandt,
> leider kommt dabei 1 heraus womit es nicht anwendbar ist.
> Wurzelkriterium wüsste ich gar nicht, wie es anzuwenden
> wäre.
>  
> Welche Möglichkeiten gibt es sonst noch?

neben Fred's Möglichkeit ist Deine gar nicht so schlecht, Du musst sie nur zu Ende denken (Stichwort: Zieharmonikasumme):

[mm] $$\summe_{k=1}^{\infty}\bruch{1}{(4\*k^{2}-1)}=\frac{1}{2}\sum_{k=1}^\infty \left(\underbrace{\frac{1}{2k-1}}_{=:a_k}-\frac{1}{2k+1}\right)=\frac{1}{2}\sum_{k=1}^\infty (a_k-a_{k+1})\,.$$ [/mm]

Mit [mm] $\sum\limits_{k=1}^\infty (a_k-a_{k+1})=\lim_{M \to \infty} \sum_{k=1}^M (a_k-a_{k+1})=\lim_{M \to \infty} \left\{\left(\sum_{k=1}^M a_k\right)-\underbrace{\sum_{k=1}^M a_{k+1}}_{=\sum_{m=2}^{M+1} a_{m}}\right\}=\lim_{M \to \infty} (a_1-a_{M+1})$ [/mm] solltest Du nun weiterkommen (beachte, dass die Folge [mm] $(a_k)_k$ [/mm] hier konvergiert).

Vorteil von Freds Methode: Die Frage der Konvergenz ist sehr schnell geklärt.
Nachteil: Der Grenzwert wird nicht angegeben (was in der Aufgabe aber auch nicht verlangt war oder war es doch verlangt? Du sprichst ja von Grenzwertbestimmung).

Vorteil dieser Methode: Sowohl die Konvergenz als auch der Grenzwert der gefragten Reihe sind ersichtlich.

Nachteil: Im Vergleich zu Freds Argumentation eine (etwas) längere Rechnung.

P.S.:
Weitere Alternative:
Man zeige zunächst per Induktion:
[mm] $$\sum_{k=1}^M \frac{1}{4k^2-1}=\frac{1}{2}-\frac{1}{2}\frac{1}{2M+1}\,.$$ [/mm]

( Wobei dies dann eher vom Himmel zu fallen scheint. Wie man konstruktiv zu dieser Behauptung kommt, dazu gucke halt mal in die obige Rechnung mit der Ziehharmonikasumme ;-) . )

Gruß,
Marcel

Bezug
                
Bezug
Konvergenz einer Reihe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:42 Do 30.10.2008
Autor: Interceptor

Hallo,

danke für eure Antworten.

Ich möchte den Grenzwert ausrechnen. Dass die Reihe konvergiert, sieht man ja, wie Fred angesprochen hat, per Majorantenkriterium.

@Marcel:

mir ist bei der Rechnung eigentlich alles klar (ich bekomme auch 1/2 raus, was laut Matheprogramm auch rauskommen müsste), bis auf zwei Dinge:

- könntest du diesen Schritt näher erläutern? Wie komme ich von der großen, geschweiften Klammer auf das, was rechts vom Gleichzeichen in der normalen Klammer steht?

[mm] \lim_{M \to \infty} \left\{\left(\sum_{k=1}^M a_k\right)-\underbrace{\sum_{k=1}^M a_{k+1}}_{=\sum_{m=2}^{M+1} a_{m}}\right\}=\lim_{M \to \infty} (a_1-a_{M+1}) [/mm] $

- wie komme ich von

[mm] \bruch{1}{(2k-1)(2k+1)} [/mm] auf [mm] \bruch{1}{2}(\bruch{1}{2k-1}-\bruch{1}{2k+1}) [/mm] ?
Kommt mir ein bisschen vor wie Partialbruchzerlegung...

Ansonsten Danke für die Antworten. Soweit wäre das Problem eigentlich gelöst ... kann man den Beitrag irgendwie als gelöst markieren?

Gruß

Interceptor


Bezug
                        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Do 30.10.2008
Autor: schachuzipus

Hallo Interceptor,

> Hallo,
>  
> danke für eure Antworten.
>  
> Ich möchte den Grenzwert ausrechnen. Dass die Reihe
> konvergiert, sieht man ja, wie Fred angesprochen hat, per
> Majorantenkriterium.
>  
> @Marcel:
>  
> mir ist bei der Rechnung eigentlich alles klar (ich bekomme
> auch 1/2 raus, was laut Matheprogramm auch rauskommen
> müsste), bis auf zwei Dinge:
>  
> - könntest du diesen Schritt näher erläutern? Wie komme ich
> von der großen, geschweiften Klammer auf das, was rechts
> vom Gleichzeichen in der normalen Klammer steht?
>  
> [mm] $\lim_{M \to \infty} \left\{\left(\sum_{k=1}^M a_k\right)-\underbrace{\sum_{k=1}^M a_{k+1}}_{=\sum_{m=2}^{M+1} a_{m}}\right\}=\lim_{M \to \infty} (a_1-a_{M+1})$ [/mm]

Schreibe dir doch die beiden Summen mal ein bisschen aus, dann siehst du sofort, dass sich bis auf [mm] $a_1$ [/mm] aus der ersten Summe und [mm] $a_{M+1}$ [/mm] aus der zweiten Summe alle anderen Summanden zu Null wegheben.

Jeder Summand von [mm] $a_2,....,a_M$ [/mm] taucht in beiden Summen auf und wird durch das "-" zu Null

>  
> - wie komme ich von
>
> [mm]\bruch{1}{(2k-1)(2k+1)}[/mm] auf
> [mm]\bruch{1}{2}(\bruch{1}{2k-1}-\bruch{1}{2k+1})[/mm] ?
>  Kommt mir ein bisschen vor wie Partialbruchzerlegung...

ganz genau, wenn du's nachrechnen magst, der Ansatz ist: [mm] $\frac{1}{(2k-1)(2k+1)}=\frac{A}{2k-1}+\frac{B}{2k+1}$ [/mm]

>  
> Ansonsten Danke für die Antworten. Soweit wäre das Problem
> eigentlich gelöst ... kann man den Beitrag irgendwie als
> gelöst markieren?

Jo, das geht, ich stell's mal um

>  
> Gruß
>  
> Interceptor
>  


LG

schachuzipus

Bezug
                        
Bezug
Konvergenz einer Reihe: Kurz zu Partialbruchzerlegung.
Status: (Antwort) fertig Status 
Datum: 18:36 Do 30.10.2008
Autor: Marcel

Hallo,

> - wie komme ich von
>
> [mm]\bruch{1}{(2k-1)(2k+1)}[/mm] auf
> [mm]\bruch{1}{2}(\bruch{1}{2k-1}-\bruch{1}{2k+1})[/mm] ?
>  Kommt mir ein bisschen vor wie Partialbruchzerlegung...

Partialbruchzerlegung ist für mich immer der Ansatz, wenn die Überlegung wie folgt (bzw. in einer Analogie) scheitert (es ist aber gut, die Partialbruchzerlegung im Hinterkopf zu haben, da sie ja durchaus bei komplizierteren Aufgaben benutzt werden sollte). Wenn ich hier sehe, dass [mm] $\frac{1}{4k^2-1}=\frac{1}{(2k-1)(2k+1)}$ [/mm] ist, dann teste ich erstmal eine einfach Rechnung. Ich prüfe, was rauskommt, wenn man [mm] $\frac{1}{2k-1}-\frac{1}{2k+1}$ [/mm] ausrechnet:

[mm] $$\frac{1}{2k-1}-\frac{1}{2k+1}=\frac{2k+1}{(2k-1)(2k+1)}-\frac{2k-1}{(2k+1)(2k-1)}=\frac{\blue{2}}{4k^2-1}$$ [/mm]

Das liefert dann das, was ich oben behauptet habe (Äquivalenzumformung: beide Seiten mit $1/2$ multiplizieren).

P.S.:
Zu der Summe schreibe ich gerade noch das, was Schachuzipus in Worten gesagt hat:
Für festes $M [mm] \in \IN$ [/mm] ist [mm] $\sum_{k=1}^M (a_k-a_{k+1})$ [/mm] eine endliche Summe. Dann gilt mit $m:=k+1$ unter Beachtung der Körperaxiome:

[mm] $$\sum_{k=1}^M (a_k-a_{k+1})=\left(\sum_{k=1}^M a_k\right)-\sum_{k=1}^M a_{k+1}=\left(\sum_{k=1}^M a_k\right)-\sum_{m=2}^{M+1} a_{m}=\left(a_1+\sum_{k=2}^M a_k\right)-\left\{\left(\sum_{m=2}^Ma_m\right)+a_{M+1}\right\}$$ [/mm]
[mm] $$=a_1-a_{M+1}\,.$$ [/mm]

Gruß,
Marcel

Bezug
                
Bezug
Konvergenz einer Reihe: Geklärt!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 Do 30.10.2008
Autor: Interceptor

Hallo,

nochmals danke für die Anworten, meine beiden letzten Fragen haben sich soeben beantwortet.

Gruß und Danke

Interceptor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]