matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Do 09.12.2010
Autor: celeste16

Aufgabe
Man überprüfe auf Konvergenz: [mm] \summe_{i=1}^{\infty}(-1)^i(\bruch{2+(-1)^i}{i}) [/mm]

ich hätte die Summen auseinandergezogen:
[mm] \summe_{i=1}^{\infty}(-1)^i(\bruch{2+(-1)^i}{i})=\summe_{i=1}^{\infty}(\bruch{2(-1)^i}{i})+\summe_{i=1}^{\infty}\bruch{1}{i} \Rightarrow \limes_{n\rightarrow\infty}2\summe_{i=1}^{n}\bruch{(-1)^i}{i} [/mm] + [mm] \limes_{n\rightarrow\infty}\summe_{i=1}^{n}\bruch{1}{i}=-2ln2 [/mm] + 0

Die Reihe hat einen Grenzwert und konvergiert damit.

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Do 09.12.2010
Autor: leduart

Hallo
die sog. harmonische Reihe [mm] \summe_{i=1}^{n}\bruch{1}{i}ist [/mm] die bekannteste divergente Reihe !
schreib mal die ersten paar Glieder deiner Reihe auf, dann siehst du vielleicht, dass sie divergiert.
Gruss leduart



Bezug
                
Bezug
Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Do 09.12.2010
Autor: celeste16

stimmt natürlich

kann man die reihen trotzdem teilen und aus der divergenz der einen teilreihe die divergenz von allen folgern?> Hallo


Bezug
                        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Do 09.12.2010
Autor: reverend

Hallo celeste,

> stimmt natürlich
>  
> kann man die reihen trotzdem teilen und aus der divergenz
> der einen teilreihe die divergenz von allen folgern?

"von allen" ist nicht gut formuliert.
Ansonsten: ja.

Grüße
reverend


Bezug
                                
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 Do 09.12.2010
Autor: celeste16

dann mache ich das doch und danke euch :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]