matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenKonvergenz einer Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Von Reihe auf Folge schließen
Status: (Frage) beantwortet Status 
Datum: 19:08 Sa 23.03.2013
Autor: Simone_Krenz

Meine Frage:

Wenn eine Reihe [mm] \summe_{K}^{inf}ak+bk [/mm] konvergiert, sind dann die Beträge der Folgen |ak| und |bk| identisch?

Ich würde das ja vermuten, da die Folge (sagen wir: ck mit ck = ak + bk), die in einer konvergierenden Reihe steht doch auf jeden Fall eine Nullfolge sein muss?

Danke für nützliche Tipps hierzu ;-)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Sa 23.03.2013
Autor: Reduktion

Meinst du [mm] \sum_{k=1}^\infty(a_k+b_k)? [/mm] Dann könnte man doch [mm] a_k:=\begin{cases} 1, & \mbox{für } k=1,..,5\\ 0, & \mbox{sonst } \end{cases} [/mm] und [mm] b_k:=\begin{cases} -1, & \mbox{für } k=5,..,10\\ 0, & \mbox{sonst } \end{cases} [/mm] definieren, dann konvergiert die Summe und die Beträge der einzelnen Folgeglieder sind in k nicht identisch.

Bezug
                
Bezug
Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Sa 23.03.2013
Autor: Simone_Krenz

Ja ich meinte das mit der Klammer drumherum. Wobei, ob das überhaupt einen Unterschied macht?
Und zu der Definition, das sehe ich ein, aber ich meinte ursprünglich auch nicht Beträge einzelner Folgeglieder, sondern die Beträge ihrer Grenzwerte. Hab das vergessen dazu zu schreiben.

Bezug
                        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Sa 23.03.2013
Autor: Rubikon

Hallo,

Wenn ich richtig verstehe was du meinst, dann müsste das so gelten, denn.

[mm] \limes_{n\rightarrow\infty} a_{k}+b_{k}=\limes_{n\rightarrow\infty} a_{k}+ \limes_{n\rightarrow\infty}b_{k}\overset{\text{Reihe Konvergent}}{=}0 [/mm]

Also auch:

[mm] \limes_{n\rightarrow\infty} a_{k}=-\limes_{n\rightarrow\infty}b_{k} [/mm]

Sowie:

[mm] |\limes_{n\rightarrow\infty} a_{k}|=|-\limes_{n\rightarrow\infty}b_{k}| \gdw |\limes_{n\rightarrow\infty} a_{k}|=|\limes_{n\rightarrow\infty}b_{k}| [/mm]

Grüße Rubikon


Bezug
                                
Bezug
Konvergenz einer Reihe: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 21:54 Sa 23.03.2013
Autor: Marcel

Hallo,

erste Frage:

> Hallo,
>  
> Wenn ich richtig verstehe was du meinst, dann müsste das
> so gelten, denn.
>  
> [mm]\limes_{n\rightarrow\infty} a_{k}+b_{k}=\limes_{n\rightarrow\infty} a_{k}+ \limes_{n\rightarrow\infty}b_{k}\overset{\text{Reihe Konvergent}}{=}0[/mm]

erstens: warum stehen da Folgengrenzwerte, und dann steht da etwas
von einer Reihe?

Zweitens: Aus der Konvergenz von [mm] $(a_n)_n$ [/mm] und [mm] $(b_n)_n$ [/mm] folgt die von der
Folge [mm] $(a_n+b_n)_n$ [/mm] - umgekehrt gilt das i.a. nicht, wie [mm] $a_n:=-n$ [/mm] und [mm] $b_n:=n$ [/mm] zeigen!

Drittens: Man betrachte mal
[mm] $$a_n:=1/n$$ [/mm]
und [mm] $b_n:=-\frac{1}{n+1}\,.$ [/mm] Beide Reihen [mm] $\sum a_n$ [/mm] und [mm] $\sum b_n$ [/mm]
divergieren, aber [mm] $\sum (a_n+b_n)$ [/mm] konvergiert (Beweis?).

(Edit: Drittens wurde passend geändert, denn das vorherige war
bzgl. der Frage eine nicht passende Antwort!)


Zur Notation: [mm] $\sum:=\sum_{n=1}^\infty\,.$ [/mm]

Gruß,
  Marcel

Bezug
                                        
Bezug
Konvergenz einer Reihe: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 22:14 Sa 23.03.2013
Autor: Rubikon

Hallo,

> Hallo Marcel,
>  
> erste Frage:
>  > Hallo,

>  >  
> > Wenn ich richtig verstehe was du meinst, dann müsste das
> > so gelten, denn.
>  >  
> > [mm]\limes_{n\rightarrow\infty} a_{k}+b_{k}=\limes_{n\rightarrow\infty} a_{k}+ \limes_{n\rightarrow\infty}b_{k}\overset{\text{Reihe Konvergent}}{=}0[/mm]
>  
> erstens: warum stehen da Folgengrenzwerte, und dann steht
> da etwas
> von einer Reihe?

Es wurde angenommen, dass die zugehörige Reihe über die Summe beider Folgen konvergent ist. Deshalb konvergiert die Summe gegen Null.

>  
> Zweitens: Aus der Konvergenz von [mm](a_n)_n[/mm] und [mm](b_n)_n[/mm] folgt
> die von der
>  Folge [mm](a_n+b_n)_n[/mm] - umgekehrt gilt das i.a. nicht, wie
> [mm]a_n:=-n[/mm] und [mm]b_n:=n[/mm] zeigen!
>  

Ist natürlich richtig. Ich bin fälschlicherweise von der Konvergenz der beiden Folgen ausgegangen.

> Drittens: Man betrachte mal
> [mm]a_n:=1/n[/mm]
>  und [mm]b_n:=-\frac{1}{n+1}\,.[/mm] Beide Reihen [mm]\sum a_n[/mm] und [mm]\sum b_n[/mm]
>  
> divergieren, aber [mm]\sum (a_n+b_n)[/mm] konvergiert (Beweis?).
>  

Vielleicht verstehe ich die Frage auch nicht ganz. Das ist ebenso korrekt (Teleskopsumme). Aber ich sehe den Zusammenhang zur Frage nicht.

EDIT: Im zweiten Post von Simone war nur vom Betrag der Grenzwerte die Rede, nicht aber vom Betrag aller Folgenglieder.

> (Edit: Drittens wurde passend geändert, denn das vorherige
> war
> bzgl. der Frage eine nicht passende Antwort!)
>  
> Zur Notation: [mm]\sum:=\sum_{n=1}^\infty\,.[/mm]
>  
> Gruß,
>    Marcel

Grüße Rubikon


Bezug
                                                
Bezug
Konvergenz einer Reihe: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 00:30 So 24.03.2013
Autor: Marcel

Hallo,

> Hallo,
>  
> > Hallo Marcel,
>  >  
> > erste Frage:
>  >  > Hallo,

>  >  >  
> > > Wenn ich richtig verstehe was du meinst, dann müsste das
> > > so gelten, denn.
>  >  >  
> > > [mm]\limes_{n\rightarrow\infty} a_{k}+b_{k}=\limes_{n\rightarrow\infty} a_{k}+ \limes_{n\rightarrow\infty}b_{k}\overset{\text{Reihe Konvergent}}{=}0[/mm]
>  
> >  

> > erstens: warum stehen da Folgengrenzwerte, und dann steht
> > da etwas
> > von einer Reihe?
>  
> Es wurde angenommen, dass die zugehörige Reihe über die
> Summe beider Folgen konvergent ist. Deshalb konvergiert die
> Summe gegen Null.

ja, es ist [mm] $\lim_{k \to \infty} (a_k+b_k)=0\,$ [/mm] wegen der Konvergenz von [mm] $\sum (a_k+b_k)\,,$ [/mm]
aber keinesfalls kannst Du [mm] $\lim_{k \to \infty}(a_k+b_k)=\lim_{k \to \infty}a_k+\lim_{k \to \infty}b_k$ [/mm]
behaupten. Letzteres gilt nur, falls BEIDE GRENZWERTE RECHTERHAND existieren!

> >  

> > Zweitens: Aus der Konvergenz von [mm](a_n)_n[/mm] und [mm](b_n)_n[/mm] folgt
> > die von der
>  >  Folge [mm](a_n+b_n)_n[/mm] - umgekehrt gilt das i.a. nicht, wie
> > [mm]a_n:=-n[/mm] und [mm]b_n:=n[/mm] zeigen!
>  >  
>
> Ist natürlich richtig. Ich bin fälschlicherweise von der
> Konvergenz der beiden Folgen ausgegangen.

Okay, das habe ich gerade nochmal geschrieben (s.o.)! ^^
  

> > Drittens: Man betrachte mal
> > [mm]a_n:=1/n[/mm]
>  >  und [mm]b_n:=-\frac{1}{n+1}\,.[/mm] Beide Reihen [mm]\sum a_n[/mm] und
> [mm]\sum b_n[/mm]
>  >  
> > divergieren, aber [mm]\sum (a_n+b_n)[/mm] konvergiert (Beweis?).
>  >  
>
> Vielleicht verstehe ich die Frage auch nicht ganz. Das ist
> ebenso korrekt (Teleskopsumme). Aber ich sehe den
> Zusammenhang zur Frage nicht.
>  
> EDIT: Im zweiten Post von Simone war nur vom Betrag der
> Grenzwerte die Rede, nicht aber vom Betrag aller
> Folgenglieder.

Ah, okay. Ich weiß jetzt auch nicht mehr, was nun eigentlich die Frage bzgl.
der Beträge ist ^^ Vielleicht bin ich da einfach zu sehr verwirrt worden.
  

> > (Edit: Drittens wurde passend geändert, denn das
> vorherige
>  > war

>  > bzgl. der Frage eine nicht passende Antwort!)

>  >  
> > Zur Notation: [mm]\sum:=\sum_{n=1}^\infty\,.[/mm]

  
P.S. Du hast (bspw.) [mm] $\lim_{n \to \infty}a_\red{k}$ [/mm] geschrieben, aber [mm] $\lim_{n \to \infty}a_\blue{\text{n}}$ [/mm]
gemeint! ;-)

Edit: Wenn es um die Gleichheit
[mm] $$|\lim_{k \to \infty}a_k|=|\lim_{k \to \infty}b_k|$$ [/mm]
gilt, dann hast Du überall recht. Damit diese Gleichheit überhaupt einen
Sinn macht, braucht man ja sowohl die Existenz von [mm] $\lim_{k \to \infty}a_k$ [/mm] als auch
von [mm] $\lim_{k \to \infty}b_k\,.$ [/mm]

Gruß,
  Marcel

Bezug
                        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 00:43 So 24.03.2013
Autor: Marcel

Hallo,

> Ja ich meinte das mit der Klammer drumherum. Wobei, ob das
> überhaupt einen Unterschied macht?
>  Und zu der Definition, das sehe ich ein, aber ich meinte
> ursprünglich auch nicht Beträge einzelner Folgeglieder,
> sondern die Beträge ihrer Grenzwerte. Hab das vergessen
> dazu zu schreiben.

okay, Du meinst also:
Wenn [mm] $\sum (a_k+b_k)$ [/mm] in [mm] $\IR$ [/mm] existiert, dann gilt auch
[mm] $$|\lim_{k \to \infty} a_k|=|\lim_{k \to \infty} b_k|\,,$$ [/mm]
sofern denn die letzte Gleichung überhaupt sinnvoll ist. Damit sie aber
sinnvoll ist, müssen hier [mm] $\lim_{k \to \infty} a_k$ [/mm] und [mm] $\lim_{k \to \infty} b_k$ [/mm] existieren!

Sei [mm] $c_k:=a_k+b_k\,.$ [/mm] Wegen der Existenz von [mm] $\sum c_k$ [/mm] folgt [mm] $c_k \to 0\,.$ [/mm]
Dann gilt
[mm] $$\lim_{k \to \infty} a_k=\lim_{k \to \infty}c_k-\lim_{k \to \infty}b_k\,,$$ [/mm]
so dass wir sogar
[mm] $$\lim_{k \to \infty} a_k=\;-\;\lim_{k \to \infty} b_k$$ [/mm]
folgern können - insbesondere gilt damit natürlich wegen [mm] $|-\;r|=|-1|*|r|=|r|$ [/mm] die behauptete Gleichheit
[mm] $$|\lim_{k \to \infty} a_k|=|\lim_{k \to \infty} b_k|\,.$$ [/mm]

Gruß,
  Marcel

Bezug
                        
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:52 So 24.03.2013
Autor: Marcel

Hallo,

> Ja ich meinte das mit der Klammer drumherum. Wobei, ob das
> überhaupt einen Unterschied macht?

es ist eher didaktischer Natur, bzw. sollte für mehr Klarheit sorgen, wenn man
die Klammern setzt.

Hier ist klar, dass mit
[mm] $$\lim_{k \to \infty} a_k+b_k$$ [/mm]
halt
[mm] $$\lim_{k \to \infty} (a_k+b_k)$$ [/mm]
nur gemeint sein kann.

Wenn ich aber
[mm] $$\lim_{k \to \infty} a_k+1$$ [/mm]
schreiben würde, und eigentlich nach der Existenz bzw. dem Wert von
[mm] $$\lim_{k \to \infty} (a_k+1)$$ [/mm]
fragen wollte, so würde das nicht zusammenpassen:
[mm] $$\lim_{k \to \infty} a_k+1$$ [/mm]
ist zu lesen als
[mm] $$(\lim_{k \to \infty} a_k)+1\,.$$ [/mm]

Hier kann man eigentlich immer sowas sagen, wie, dass die Klammer direkt
nach dem "lim" beginnt, und dort aufhören soll, wo zum letzten Mal der
Index (der unter dem "lim") (auf einer Seite der Gleichung) auftaucht:
[mm] $$\lim_{k \to \infty} a_k+2+b_k$$ [/mm]
ist also als
[mm] $$\lim_{k \to \infty} (a_k+2+b_k)$$ [/mm]
zu verstehen. Analog schreibt man bei Integralen auch
[mm] $$\int [/mm] f(x)+g(x)dx$$
und will damit andeuten, wo die Klammern zu stehen haben. "Eigentlich" sollte
man das hier nicht so tun, sondern müßte es korrekt
[mm] $$\int [/mm] (f(x)+g(x))dx$$
schreiben (Fred hat das mal irgendwann begründet, bzw. auch Leduart; das
hat mit der ursprünglichen Interpretation des Integrals zu tun - und dass
man ja auch nicht $2+3*x$ schreibt, wenn man $(2+3)*x$ meint - vielleicht
sagt einer von denen das nochmal genauer).

Von daher: Hier lieber ein paar Klammern zuviel setzen, und formal auf der
sicheren Seite sein!

Gruß,
  Marcel

Bezug
        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:10 Sa 23.03.2013
Autor: Gonozal_IX

Hiho,

die Antwort von Rubikon ist zwar nett, beinhaltet aber einen Fehler:

Niemand sagt, dass [mm] a_k [/mm] und [mm] b_k [/mm] überhaupt für sich konvergieren müssen!
Nur weil [mm] (a_k [/mm] + [mm] b_k) [/mm] konvergiert, muss das für [mm] a_k [/mm] oder [mm] b_k [/mm] gar nicht gelten.

MFG,
Gono.

Bezug
        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Sa 23.03.2013
Autor: Marcel

Hallo,

> Meine Frage:
>  
> Wenn eine Reihe [mm]\summe_{K}^{inf}ak+bk[/mm] konvergiert, sind
> dann die Beträge der Folgen |ak| und |bk| identisch?
>  
> Ich würde das ja vermuten, da die Folge (sagen wir: ck mit
> ck = ak + bk), die in einer konvergierenden Reihe steht
> doch auf jeden Fall eine Nullfolge sein muss?

Du wirst folgern können, dass [mm] $a_k+b_k \to 0\,.$ [/mm] Deine obige Annahme, dass
die beiden Folgen betragsmäßig übereinstimmen (in dem Sinne, dass
[mm] $|a_n|=|b_n|$ [/mm] für alle [mm] $n\,$ [/mm] gilt), wird schon durch

[mm] $$a_n:=1/n$$ [/mm]
und
[mm] $$b_n:=-\frac{1}{n+1}$$ [/mm]
widerlegt:
Beide Reihen [mm] $\sum a_n$ [/mm] und [mm] $\sum b_n$ [/mm] divergieren, aber [mm] $\sum (a_n+b_n)$ [/mm] konvergiert (Beweis?).
Zudem gilt sicher stets [mm] $|a_n|\not= |b_n|$ [/mm] wegen $1/n [mm] \not=1/(n+1)\,.$ [/mm]

Zur Notation: [mm] $\sum:=\sum_{n=1}^\infty\,.$ [/mm]

P.S.
Alternativ kannst Du auch sowas machen: Wählen wir bspw. mal die Folge
[mm] $(a_n)_n$ [/mm] mit [mm] $a_n:=n\,.$ [/mm] Wähle eine reelle Folge [mm] $(c_n)_n$ [/mm] so, dass unendlich viele [mm] $c_n \not=0$ [/mm]
sind und dass [mm] $\sum c_n$ [/mm] in [mm] $\IR$ [/mm] konvergiert - bspw. [mm] $c_n:=1/n^2$ [/mm] tut's. (Hier sind ja
nicht nur unendlich viele [mm] $c_n \not=0\,,$ [/mm] sondern sogar alle [mm] $c_n\,.$) [/mm]
Dann setze [mm] $b_n:=c_n-a_n\,.$ [/mm] Mit Sicherheit ist [mm] $\sum (a_n+b_n)$ [/mm] konvergent,
denn [mm] $\sum c_n$ [/mm] konvergiert und es ist ja [mm] $a_n+b_n=c_n\,.$ [/mm] Oben gilt aber
etwa
[mm] $|a_n|=a_n=n$ [/mm] und [mm] $|b_n|=|c_n-a_n|=n-\frac{1}{n^2}=\frac{n^3-1}{n^2} \not=n\,.$ [/mm] (Wäre [mm] $(n^3-1)/n^2=n\,$ [/mm] auch nur für ein $n [mm] \in \IN\,,$ [/mm]
so folgt für dieses [mm] $n^3-1=n^3$ [/mm] und damit der Widerspruch [mm] $-1=0\,.$) [/mm]

Gruß,
  Marcel

Bezug
        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Sa 23.03.2013
Autor: fred97


> Meine Frage:
>  
> Wenn eine Reihe [mm]\summe_{K}^{inf}ak+bk[/mm] konvergiert, sind
> dann die Beträge der Folgen |ak| und |bk| identisch?

Unsinn ! Nehmen wir [mm] a_k=0 [/mm] und [mm] b_k= \bruch{1}{k^2} [/mm] für alle k  


FRED

>  
> Ich würde das ja vermuten, da die Folge (sagen wir: ck mit
> ck = ak + bk), die in einer konvergierenden Reihe steht
> doch auf jeden Fall eine Nullfolge sein muss?
>  
> Danke für nützliche Tipps hierzu ;-)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Konvergenz einer Reihe: Abschluss
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:57 So 24.03.2013
Autor: Simone_Krenz


> Unsinn ! Nehmen wir [mm]a_k=0[/mm] und [mm]b_k= \bruch{1}{k^2}[/mm] für alle k



Ja Danke, ich hab alles durchgerechnet und sehe das jetzt auch ein. Also wenn [mm]a_k[/mm] konvergiert, dann gilt [mm] |\limes_{n\rightarrow\infty} a_{k}|=|\limes_{n\rightarrow\infty}b_{k}|, [/mm] aber nicht zwangsläufig |[mm]a_k[/mm]| = |[mm]b_k[/mm]|, es sei denn |[mm]a_k[/mm]| und |[mm]b_k[/mm]| wären BEIDE konstante Folgen.

Genauso denkbar wäre eine konvergente Reihe [mm] \summe_{K}^{inf}=([/mm] [mm]a_k[/mm] + [mm]b_k[/mm] ) aber auch mit je divergierenden [mm]a_k[/mm] und [mm]b_k[/mm]; dann ist die Annahme von identischen Grenzen in der Tat Blödsinn!

Vielen Dank für eure HIlfen !
Simone

Bezug
                        
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 So 24.03.2013
Autor: Marcel

Hallo,

> > Unsinn ! Nehmen wir [mm]a_k=0[/mm] und [mm]b_k= \bruch{1}{k^2}[/mm] für alle
> k
>  
>
>
> Ja Danke, ich hab alles durchgerechnet und sehe das jetzt
> auch ein. Also wenn [mm]a_k[/mm] konvergiert,

Du brauchst ZUSÄTZLICH die Konvergenz von (der Folge) [mm] $(b_k)_k\,.$ [/mm] Nebenbei: Auch,
wenn das oft so geschrieben wird: [mm] "$a_k$ [/mm] konvergiert...", so ist damit doch
gemeint,dass [mm] "$(a_k)_k$ [/mm] konvergiert." Wenn man penibel ist, steht in [mm] "$a_k$ [/mm] konvergiert"
eigentlich die Aussage, dass das [mm] $k\,$-te [/mm] Folgenglied der Folge [mm] $(a_n)_n$ [/mm] konvergiert
- was eine "blöde" Aussage ist. (Was könnte man damit meinen? Dass mit [mm] $a_n:=1/n^2$ [/mm] etwa
[mm] $a_5=1/25$ [/mm] konvergiert, lese ich dann so, dass [mm] $(1/25)_n$ [/mm] eine konvergente
Folge ist - das ist in der Tat so, da konstante Folgen gegen ihren
(konstanten) Wert konvergieren!)

> dann gilt
> [mm]|\limes_{n\rightarrow\infty} a_{k}|=|\limes_{n\rightarrow\infty}b_{k}|,[/mm]
> aber nicht zwangsläufig |[mm]a_k[/mm]| = |[mm]b_k[/mm]|, es sei denn |[mm]a_k[/mm]|
> und |[mm]b_k[/mm]| wären BEIDE konstante Folgen.

Wieso sollten die konstant sein? Mit [mm] $a_n=-b_n=\tfrac{1}{n}$ [/mm] sind die alles andere als
konstant - ebenso kannst Du [mm] $a_n=-b_n=\tfrac{1}{n^2}$ [/mm] nehmen oder
oder oder... (kompliziertere Beispiele will ich hier gar nicht basteln).
  

> Genauso denkbar wäre eine konvergente Reihe
> [mm]\summe_{K}^{inf}=([/mm] [mm]a_k[/mm] + [mm]b_k[/mm] ) aber auch mit je
> divergierenden [mm]a_k[/mm] und [mm]b_k[/mm]; dann ist die Annahme von
> identischen Grenzen in der Tat Blödsinn!

Na, wenn Grenzwerte nicht existieren, kann man auch ihre Beträge nicht
vergleichen. (Wenn [mm] $(a_k)_k$ [/mm] konvergiert, aber [mm] $(b_k)_k$ [/mm] dies nicht tut, so
kann ich zwar [mm] $|\lim a_k|$ [/mm] bilden, aber wie soll ich den mit [mm] $|\lim b_k|$ [/mm] vergleichen,
wenn letztgenannter gar nicht existiert?) Deswegen sagte ich ja:

Damit die Gleichheit
[mm] $$|\lim a_k|=|\lim b_k|$$ [/mm]
überhaupt einen Sinn machen kann, brauchst Du hier die Existenz von SOWOHL [mm] $\lim a_k$ [/mm]
ALS AUCH [mm] $\lim b_k\,.$ [/mm]

Gruß,
  Marcel

Bezug
                                
Bezug
Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Mo 25.03.2013
Autor: Simone_Krenz

Ähm; durchaus erhellend, aber da die Reihe (lt. Fragestellung schon) konvergiert, ist doch IMPLIZIT, dass auch [mm](b_k)_k[/mm] konvergiert, wenn [mm](a_k)_k[/mm] konvergiert, oder nicht?

Grüße, Simone

Bezug
                                        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mo 25.03.2013
Autor: Marcel

Hallo,

> Ähm; durchaus erhellend, aber da die Reihe (lt.
> Fragestellung schon) konvergiert, ist doch IMPLIZIT, dass
> auch [mm](b_k)_k[/mm] konvergiert, wenn [mm](a_k)_k[/mm] konvergiert, oder
> nicht?

joa, schau'n wir uns das nochmal an:
Wenn [mm] $\sum_k (a_k+b_k)$ [/mm] konvergiert (daran hatte ich halt schon gar nicht mehr
gedacht, dass das bei Dir eine Voraussetzung war), dann gilt
[mm] $$a_k+b_k \to 0\,.$$ [/mm]
Wenn [mm] $a_k \to a\,,$ [/mm] so folgt natürlich
[mm] $$b_k=(a_k+b_k)-a_k \;\;\;\to\;\;\; 0-a=\;-\;a\,.$$ [/mm]

Wenn Du das so meintest, hast Du natürlich Recht. (Das heißt, Du wolltest
nochmal an alle Dir gegebenen Voraussetzungen erinnern und die
Konsequenzen, die sich aus diesen Voraussetzungen ergeben.)

Ohne das alles, also wenn man nur mal irgendzwei Folgen [mm] $(a_k)_k$ [/mm] und [mm] $(b_k)_k$ [/mm]
gegeben hat (über deren Konvergenzverhalten man (noch) nichts weiß),
und wenn man für diese dann gucken soll, ob
[mm] $$|\lim a_k|=|\lim b_k|$$ [/mm]
gilt, macht der "Test der letzten Gleichheit" nur Sinn, wenn die beiden Folgen
auch konvergent sind. Das meinte ich.

In Deinem Falle hast Du recht: Unter den gegebenen Voraussetzungen
kannst Du dort sogar sagen, dass [mm] $(a_k)_k$ [/mm] GENAU DANN konvergiert,
wenn [mm] $(b_k)_k\,$ [/mm] es tut. Und im Falle einer (und damit auch beider) Folgen
gilt, dass der eine Grenzwert das [mm] $-1\,$-Fache [/mm] des anderen ist. (Man kann
auch sagen, dass sie additiv invers zueinander sind. Oder es gibt auch noch
andere mögliche Sprechweisen...)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]