Konvergenz in L1 unklar < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:00 Fr 27.03.2020 | Autor: | Jellal |
Guten Abend!
Ich bin gerade kläglich daran gescheitert, rigoros einzusehen, dass die Konvergenz in L1 der Konvergenz im Erwartungswert entspricht.
Wenn ich weiß, dass [mm] \limes_{n\rightarrow\infty}E|X_{n}-X| [/mm] = 0... wie kann ich dann zeigen, dass [mm] \limes_{n\rightarrow\infty}EX_{n} [/mm] = EX ist?
Also wie bekomme ich die Betragsstriche weg? Gilt dieser Zusammenhang nur in Spezialfällen, wenn ich z.B. weiß, dass die [mm] X_{n} [/mm] fast sicher kleiner oder größer als X sind?`
vG.
Jellal
|
|
|
|
Hiho,
> Ich bin gerade kläglich daran gescheitert, rigoros
> einzusehen, dass die Konvergenz in L1 der Konvergenz im
> Erwartungswert entspricht.
wieso "entspricht"?
Das ist de facto die Definition, korrekter wäre dann aber "Konvergenz unterm Erwartungswert".
> Wenn ich weiß, dass [mm]\limes_{n\rightarrow\infty}E|X_{n}-X|[/mm]
> = 0... wie kann ich dann zeigen, dass
> [mm]\limes_{n\rightarrow\infty}EX_{n}[/mm] = EX ist?
Oder meintest du: Dass [mm] $L^1$ [/mm] - Konvergenz dasselbe ist wie die Konvergenz der Erwartungswerte?
Das stimmt übrigens auch nicht, zwar gilt die Folgerung, dass aus [mm] L^1-Konvergenz [/mm] die Konvergenz der Erwartungswerte folgt, aber die Rückrichtung gilt im Allgemeinen nicht!
Und dann noch ein Hinweis / Bitte: Die Notation für den Erwartungswert nur EX zu schreiben, ist gruselig, uneindeutig und solltest du dir abgewöhnen.
Schreib also bitte E[X] oder E(X).
> Also wie bekomme ich die Betragsstriche weg? Gilt dieser
> Zusammenhang nur in Spezialfällen, wenn ich z.B. weiß,
> dass die [mm]X_{n}[/mm] fast sicher kleiner oder größer als X sind?'
Nö, das folgt schon fast trivial:
Es ist $0 [mm] \le \left| E[X_n] - E[X] \right| \le E[|X_n [/mm] - X|]$
D.h. gilt nun [mm] $\lim_{n\to\infty} E[|X_n [/mm] - X|] = 0$ folgt daraus [mm] $\lim_{n\to\infty} \left| E[X_n] - E[X] \right| [/mm] = 0 [mm] \quad \gdw \quad \lim_{n\to\infty} \left(E[X_n] - E[X] \right) [/mm] = 0 [mm] \quad \gdw \quad \lim_{n\to\infty} E[X_n] [/mm] = E[X]$
Gruß,
Gono
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:25 Fr 27.03.2020 | Autor: | Jellal |
Danke Gono, das hab ich gebraucht.
Die Notation machen die hier alle so, vermutlich aus Faulheit. Besonders mit Potenzen war das dann verwirrend, also [mm] EX^{2} [/mm] = [mm] E(X^{2}), [/mm] nicht etwa [mm] (E(X))^{2}. [/mm]
Stimmt schon, dass das nicht schön ist.
vG.
Jellal
|
|
|
|